| Deutsch English Français Italiano |
|
<vpqttm$3atmj$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: Equation complexe Date: Thu, 27 Feb 2025 15:53:25 -0800 Organization: A noiseless patient Spider Lines: 25 Message-ID: <vpqttm$3atmj$2@dont-email.me> References: <oAvE_mEWK82aUJOdwpGna1Rzs1U@jntp> <bb3c730b-e8b7-4a24-a1e7-4a6168f8ad40@att.net> <dEPuOowIkceWgMnraoFj2-CO1RE@jntp> <YgJxJ6kusVsB0zMO0Cua3VJiRr0@jntp> <vLC6xxNBX6XYjIJpFLfGJMy1Wlo@jntp> <JWsJNfms1xfnWu_TEvKnW_pNPWw@jntp> <rahjDq9rqG60XjSpiAryhAhDoig@jntp> <vpnsfu$2n5d5$1@dont-email.me> <Tq4dwAOZX1tWsyzfsUwTEFiN88E@jntp> <addb511a5b7d5d35714ea86bde81bdb29964d87f@i2pn2.org> <rTIYgKby2LChwmei9nhXnUkhEPg@jntp> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 28 Feb 2025 00:53:27 +0100 (CET) Injection-Info: dont-email.me; posting-host="cad7a6177c2179808129aff139dbb464"; logging-data="3503827"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/wnbGXYLjQcN7ep7GMGlHwBE9Srtli5Dg=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:8mYKY611SMYu4zOUnVqFg+WMycY= In-Reply-To: <rTIYgKby2LChwmei9nhXnUkhEPg@jntp> Content-Language: en-US On 2/27/2025 7:42 AM, Richard Hachel wrote: > Le 27/02/2025 à 08:47, joes a écrit : >> Am Wed, 26 Feb 2025 20:22:01 +0000 schrieb Richard Hachel: >>> Le 26/02/2025 à 21:10, efji a écrit : >>> >>>> If you assume i^2 = i*i = -1, then i^4=1. >>> Absolutely not. >> -1*-1 is not 1? > > Claro que si. > Pero, i*i=i²=-1 ; (i²)²=-1 > It seems that the imaginary unit i is a special unit such that i^x=-1 > whatever x. > > Mathematicians are right when they say that i=-1, that i^(-1/2)=-1, that > i²=-1. > But if we understand Dr. Hachel's idea, we see that these three true > statements are not enough. > Hachel imposes that i is an imaginary unit such that i^x=-1 whatever x. > This confuses the mathematician, who is used to working with real > numbers, and who sets a²*a²=a^4 with systematically a>0. > But here we are not working with real numbers, but with the imaginary i. > It is not the same thing: we must systematically set i^x=-1 for all x. It kind of seems like you deny that the y axis even exists?