Deutsch   English   Français   Italiano  
<vpsit9$3n64d$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: efji <efji@efi.efji>
Newsgroups: fr.sci.maths
Subject: =?UTF-8?Q?Re=3A_Comment_trouver_des_racines_complexes_coh=C3=A9rent?=
 =?UTF-8?B?ZXM/?=
Date: Fri, 28 Feb 2025 15:57:44 +0100
Organization: A noiseless patient Spider
Lines: 14
Message-ID: <vpsit9$3n64d$1@dont-email.me>
References: <tcZcMWb-TIres9otFDcOyTavI7M@jntp>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 28 Feb 2025 15:57:46 +0100 (CET)
Injection-Info: dont-email.me; posting-host="f94ecf5a14cb3e2519198bf93e1ddec9";
	logging-data="3905677"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18tgIwzbrqAJCm512fDBq0k"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:1/YtWHIdy67f4WyOyfZFhNfmnCs=
In-Reply-To: <tcZcMWb-TIres9otFDcOyTavI7M@jntp>
Content-Language: fr, en-US
Bytes: 1359

Le 28/02/2025 à 15:24, Richard Hachel a écrit :
> Nous avons dit de nombreuses fois que les racines complexes d'une courbe 

"Nous" :)

> étaient les racines réelles de sa courbe miroir (en rotation de 180°) et 
> réciproquement.

miroir =  rotation de 180° :)

Mais quel abruti...

-- 
F.J.