Deutsch   English   Français   Italiano  
<vpsqb1$3mn6v$5@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: The set of necessary FISONs
Date: Fri, 28 Feb 2025 18:04:33 +0100
Organization: A noiseless patient Spider
Lines: 85
Message-ID: <vpsqb1$3mn6v$5@dont-email.me>
References: <vmo1bs$1rnl$1@dont-email.me> <vpc885$3t9g8$1@dont-email.me>
 <e19b21b4-07f1-46ac-94f0-dac6cd114754@att.net> <vpetjf$eusv$3@dont-email.me>
 <98baf83e-820e-4e1b-be2c-e5ea4802683d@att.net> <vpfc74$hq5c$2@dont-email.me>
 <0876c2b9-2144-44c1-a26b-20176f5e2127@att.net> <vpft4t$kdg0$4@dont-email.me>
 <067f772a-4f4c-4c27-8042-3f605f814876@att.net> <vpi1g6$14ivq$7@dont-email.me>
 <vpi7eu$17stc$1@dont-email.me> <vpi9jo$18qai$2@dont-email.me>
 <fa7bb863-570e-4602-b932-277b01133bba@att.net> <vpk0nn$1s04m$1@dont-email.me>
 <dd62224a-579b-4032-be2c-04c305247753@att.net> <vpmvg3$2i1ev$1@dont-email.me>
 <558a879a-4130-476a-8b5d-d53cd371919b@att.net> <vppfol$3280b$1@dont-email.me>
 <04dd7515-297c-4e7c-9e6a-a4f43e663552@att.net> <vpqflj$38bst$2@dont-email.me>
 <43c020cb-dc8b-4feb-be1d-2a76f02be14e@att.net> <vpqnbk$39ff1$2@dont-email.me>
 <19431656-fb42-4569-9334-b5b7e19c80c6@att.net> <vpruld$3jg6j$1@dont-email.me>
 <4b45ff34-dc3f-4e32-90a3-237f78fbd321@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 28 Feb 2025 18:04:34 +0100 (CET)
Injection-Info: dont-email.me; posting-host="d611468fbed90081cb075523c9fadb1c";
	logging-data="3890399"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+PMnO5Ue1mqyaVrRhNh38jgUIwHQMFhtg="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:L0c98yr28iuc4jFbab+qwQOWNyE=
Content-Language: en-US
In-Reply-To: <4b45ff34-dc3f-4e32-90a3-237f78fbd321@att.net>
Bytes: 4165

On 28.02.2025 16:52, Jim Burns wrote:
> On 2/28/2025 4:12 AM, WM wrote:
>> On 28.02.2025 01:00, Jim Burns wrote:
>>> On 2/27/2025 5:01 PM, WM wrote:
> 
>>> Zermelo's approach
>>> does not extend ∀n:Aᴺ(n) to Aᴺ(ℕ)
>>
>> It does.
> 
> Eppur si muove.
> 
>> Zermelo says it,
> 
> Nope.

Um aber die Existenz "unendlicher" Mengen zu sichern, bedürfen wir noch 
des folgenden, seinem wesentlichen Inhalte von Herrn Dedekind 
herrührenden Axioms

>> and it is easy to prove it:
>> Adding all natural numbers established the set ℕ.
> 
> We are finite beings. We do not do that.

Therefore we use FISONs without approaching ℕ.

>> How is Z accomplished?
> 
> Z is NOT accomplishedᵂᴹ.

The existence of Z is secured by induction: Um aber die Existenz 
"unendlicher" Mengen zu sichern, bedürfen wir noch des folgenden, seinem 
wesentlichen Inhalte von Herrn Dedekind herrührenden Axioms.

Without induction Z is not existing.
> 
> Zermelo describes the Z in the discussion

by induction. By what else?

>> { } and a ==> {a}.
> 
> True of Z because,
> when Zermelo describes Z,
> Zermelo describes such a set.

He describes it by induction.
> 
> Z being such a set is not induction.

The proof of existence is done by induction.
> 
> Induction proves inductive a subset of
> a set which is its.own.only.inductive.subset.

The set Z and all its inductive subsets are proven by induction.
> An inductive proof only proves about
> a set which is its.own.only.inductive.subset,
> like Z₀ and like ℕ, perhaps not like Z

Z contains many inductive subsets.
> 
>>> Proofs by induction are unreliable
>>> in Robinson arithmetic.
>>
>> Irrelevant.
> 
> What you (WM) think is a proof by induction
> is unreliable. But you don't care?

The set Z is not existing and not even defined without Zermelo's induction.

Note that for *definable* elements we have
{1, 2, 3, 4, 5} \ {1} \ {2} \ {3} \ {4} \ {5} = { },
which is same as
{1, 2, 3, 4, 5} \ {1, 2, 3, 4, 5} = { }.

Hence because of ∀n ∈ UA: |ℕ \ {1, 2, 3, ..., n}| = ℵo
we get
ℕ \ A(1) \ A(2) \ A(3) \ ... =/= { }
which is same as
ℕ \ UA =/= { }.

Regards, WM