Deutsch   English   Français   Italiano  
<vq2gph$ugus$3@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: New equation
Date: Sun, 2 Mar 2025 12:58:25 -0800
Organization: A noiseless patient Spider
Lines: 38
Message-ID: <vq2gph$ugus$3@dont-email.me>
References: <CJRYb90R4pKx6LHEBcCdcCA4y30@jntp>
 <fce8aaae-4ac3-4909-99df-60491fc4de7e@att.net>
 <k8ycnepSIp40ZVz6nZ2dnZfqn_idnZ2d@giganews.com>
 <655553fb-adc2-4d01-87af-d7d7d6d917c6@att.net>
 <JOydnXAoj_h03F_6nZ2dnZfqnPWdnZ2d@giganews.com>
 <08636921-5882-4fd8-abe1-bb5f36db3bf3@att.net>
 <AO6dnczUKaq7DV76nZ2dnZfqnPhg4p2d@giganews.com>
 <9bb0ee70-f267-4aa1-907d-84726aae7030@att.net>
 <HLOdndo2ZJypI176nZ2dnZfqn_gAAAAA@giganews.com>
 <5bb69733-e58b-4e30-ae43-e2523e66983f@att.net>
 <2z3nZJiAutJn82givDx641Nzg4k@jntp>
 <b2552719-c9e6-48b5-be78-97cade1f5a7a@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 02 Mar 2025 21:58:26 +0100 (CET)
Injection-Info: dont-email.me; posting-host="211b8466cb4c170d18c67d56277f0112";
	logging-data="1000412"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+Xk6IGWjvewrsay1y49Q6iZ8S1Ul9of1k="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:VimBWS4+AFG+Ci0p+KTwZVq9fwA=
In-Reply-To: <b2552719-c9e6-48b5-be78-97cade1f5a7a@att.net>
Content-Language: en-US
Bytes: 2621

On 3/2/2025 9:55 AM, Jim Burns wrote:
> On 3/2/2025 11:32 AM, Richard Hachel wrote:
>> Le 02/03/2025 à 06:06, Jim Burns a écrit :
>>> On 3/1/2025 9:11 PM, Ross Finlayson wrote:
> 
>>>> Find various different formalisms of complex numbers
>>>> from all through the libraries and notice it's
>>>> given various ways.
>>>
>>> Find a formalism of complex numbers _disagreeing with_
>>> ⎛
>>> ⎜ a+b𝑖 = c+d𝑖  ⇔  a=c ∧ b=d
>>> ⎜
>>> ⎜ (a+b𝑖)+(c+d𝑖) = (a+c)+(b+d)𝑖
>>> ⎜
>>> ⎜ (a+b𝑖)⋅(c+d𝑖) = (ac-bd)+(ad+bc)𝑖
>>> ⎝
>>> and show it to me.
> 
>>> (a+b𝑖)+(c+d𝑖) = (a+c)+(b+d)𝑖
>>
>> Yes.
>>
>>> (a+b𝑖)⋅(c+d𝑖) = (ac-bd)+(ad+bc)𝑖
>>
>> No.
>>
>> (a+b𝑖)⋅(c+d𝑖) = (ac+bd)+(ad+bc)𝑖
> 
> Wrong.
> Those are flying rainbow sparkle ponies.
> (poneys scintillants arc-en-ciel volants)
> 
> Why can't I "vote" for flying rainbow sparkle ponies?

I wonder if the Flying Spaghetti Monster (FSM) hangs out with the Flying 
Rainbow Sparkle Ponies (FRSP) from time to time? ;^)