Deutsch English Français Italiano |
<vq2gph$ugus$3@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: New equation Date: Sun, 2 Mar 2025 12:58:25 -0800 Organization: A noiseless patient Spider Lines: 38 Message-ID: <vq2gph$ugus$3@dont-email.me> References: <CJRYb90R4pKx6LHEBcCdcCA4y30@jntp> <fce8aaae-4ac3-4909-99df-60491fc4de7e@att.net> <k8ycnepSIp40ZVz6nZ2dnZfqn_idnZ2d@giganews.com> <655553fb-adc2-4d01-87af-d7d7d6d917c6@att.net> <JOydnXAoj_h03F_6nZ2dnZfqnPWdnZ2d@giganews.com> <08636921-5882-4fd8-abe1-bb5f36db3bf3@att.net> <AO6dnczUKaq7DV76nZ2dnZfqnPhg4p2d@giganews.com> <9bb0ee70-f267-4aa1-907d-84726aae7030@att.net> <HLOdndo2ZJypI176nZ2dnZfqn_gAAAAA@giganews.com> <5bb69733-e58b-4e30-ae43-e2523e66983f@att.net> <2z3nZJiAutJn82givDx641Nzg4k@jntp> <b2552719-c9e6-48b5-be78-97cade1f5a7a@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 02 Mar 2025 21:58:26 +0100 (CET) Injection-Info: dont-email.me; posting-host="211b8466cb4c170d18c67d56277f0112"; logging-data="1000412"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+Xk6IGWjvewrsay1y49Q6iZ8S1Ul9of1k=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:VimBWS4+AFG+Ci0p+KTwZVq9fwA= In-Reply-To: <b2552719-c9e6-48b5-be78-97cade1f5a7a@att.net> Content-Language: en-US Bytes: 2621 On 3/2/2025 9:55 AM, Jim Burns wrote: > On 3/2/2025 11:32 AM, Richard Hachel wrote: >> Le 02/03/2025 à 06:06, Jim Burns a écrit : >>> On 3/1/2025 9:11 PM, Ross Finlayson wrote: > >>>> Find various different formalisms of complex numbers >>>> from all through the libraries and notice it's >>>> given various ways. >>> >>> Find a formalism of complex numbers _disagreeing with_ >>> ⎛ >>> ⎜ a+b𝑖 = c+d𝑖 ⇔ a=c ∧ b=d >>> ⎜ >>> ⎜ (a+b𝑖)+(c+d𝑖) = (a+c)+(b+d)𝑖 >>> ⎜ >>> ⎜ (a+b𝑖)⋅(c+d𝑖) = (ac-bd)+(ad+bc)𝑖 >>> ⎝ >>> and show it to me. > >>> (a+b𝑖)+(c+d𝑖) = (a+c)+(b+d)𝑖 >> >> Yes. >> >>> (a+b𝑖)⋅(c+d𝑖) = (ac-bd)+(ad+bc)𝑖 >> >> No. >> >> (a+b𝑖)⋅(c+d𝑖) = (ac+bd)+(ad+bc)𝑖 > > Wrong. > Those are flying rainbow sparkle ponies. > (poneys scintillants arc-en-ciel volants) > > Why can't I "vote" for flying rainbow sparkle ponies? I wonder if the Flying Spaghetti Monster (FSM) hangs out with the Flying Rainbow Sparkle Ponies (FRSP) from time to time? ;^)