Deutsch   English   Français   Italiano  
<vq5cmh$1h4h6$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: FromTheRafters <FTR@nomail.afraid.org>
Newsgroups: sci.math
Subject: Re: The set of necessary FISONs
Date: Mon, 03 Mar 2025 18:06:54 -0500
Organization: Peripheral Visions
Lines: 12
Message-ID: <vq5cmh$1h4h6$1@dont-email.me>
References: <vmo1bs$1rnl$1@dont-email.me>   <dd62224a-579b-4032-be2c-04c305247753@att.net> <vpmvg3$2i1ev$1@dont-email.me> <558a879a-4130-476a-8b5d-d53cd371919b@att.net> <vppfol$3280b$1@dont-email.me> <04dd7515-297c-4e7c-9e6a-a4f43e663552@att.net> <vpqflj$38bst$2@dont-email.me> <43c020cb-dc8b-4feb-be1d-2a76f02be14e@att.net> <vpqnbk$39ff1$2@dont-email.me> <19431656-fb42-4569-9334-b5b7e19c80c6@att.net> <vpruld$3jg6j$1@dont-email.me> <4b45ff34-dc3f-4e32-90a3-237f78fbd321@att.net> <vpsqb1$3mn6v$5@dont-email.me> <4ed4b6dc-de9b-46f7-b2f8-484557d89281@att.net> <vpuvsk$721h$2@dont-email.me> <7ac03d2e-5d72-4186-8b33-6fdddb7b83ff@att.net> <vpvjks$asqp$2@dont-email.me> <cd2a1798-4145-4127-a71c-95462cffd034@att.net> <vq19hl$nima$1@dont-email.me> <7ccdd4c7-d15e-417f-9b85-6f9a790d7d44@att.net> <vq29d4$sef9$2@dont-email.me> <db6fba32-612d-4a80-9b42-8c21e9384194@att.net> <vq3qub$18347$3@dont-email.me> <a5a5e4ab-605a-4433-89d7-38703c35cbb6@att.net> <vq58iu$1ftht$1@dont-email.me>
Reply-To: erratic.howard@gmail.com
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 04 Mar 2025 00:06:58 +0100 (CET)
Injection-Info: dont-email.me; posting-host="5cd05b03f0c6ed81a53885a1eb37c7cd";
	logging-data="1610278"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/aznObS8JfiOzoxO2vuJlRLu2vzoM87hM="
Cancel-Lock: sha1:bjuBY2Hlft8IZZhKtcZv1O2DVJU=
X-ICQ: 1701145376
X-Newsreader: MesNews/1.08.06.00-gb

WM wrote on 3/3/2025 :
> On 03.03.2025 20:26, Jim Burns wrote:
>> On 3/3/2025 3:57 AM, WM wrote:
>> Zermelo's ℕ and Cantor's ℕ are the same
>> up to isomorphism.
>
> No. Zermelo uses induction which never goes beyond a finite number of finite 
> numbers.

I told you this already. Zermelo's construction does not make 
"transfinite induction". Why did you argue and start talking about 
Cantor using it?