| Deutsch English Français Italiano |
|
<vqik0c$ca9t$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: New way of dealing with complex numbers Date: Sun, 9 Mar 2025 00:31:24 +0100 Organization: A noiseless patient Spider Lines: 41 Message-ID: <vqik0c$ca9t$1@dont-email.me> References: <kRgli3QEdimCvJ9569p9c9pq7Kc@jntp> <vqemhv$2gck$1@news.muc.de> <h8RR2Nzw97n_q0rv1uxcQeGImmk@jntp> <vqfm6n$3ndao$2@dont-email.me> <pPxKmW5wI10Jy2mOG_Y_84dfZXg@jntp> <vqhanm$4cd3$1@dont-email.me> <8wfDWQnhQFqO9uBQ5h-nF8mcuFk@jntp> <vqhgtr$5je4$1@dont-email.me> <vqihdj$bkmo$2@dont-email.me> <vqihso$bkmo$3@dont-email.me> <vqijmt$b8c0$2@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 09 Mar 2025 00:31:24 +0100 (CET) Injection-Info: dont-email.me; posting-host="10511604d5b70f470a56010831842feb"; logging-data="403773"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+xrLRN31XOlYwxP8RvoFCo" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:4aXK8Mo3jC0DO7mlVjLhAgBAgD0= In-Reply-To: <vqijmt$b8c0$2@dont-email.me> Content-Language: de-DE Bytes: 2382 Am 09.03.2025 um 00:26 schrieb efji: > Le 08/03/2025 à 23:55, Moebius a écrit : >> Am 08.03.2025 um 23:47 schrieb Moebius: >>> Am 08.03.2025 um 14:32 schrieb efji: >>>> Le 08/03/2025 à 14:18, Richard Hachel a écrit : >>> >>>> Associativity is MANDATORY to be able to write something like i^4 = >>>> i*i*i*i. >>>> >>>> For a non associative operator, i^4 means NOTHING. >>> >>> Oh, i^(n+1) just might mean (i^n) * i (with n e IN). >>> >>> [And i^0 = 1.] >>> >>> Then: i^4 = ((i*i)*i)*i. >>> >>> [Hint: recursive definition: >>> x^0 = 1 >>> x^(n+1) = x^n * x (for all n e IN)] >> >> x^0 = 1 >> x^(n+1) = (x^n) * x (for all n e IN)] >> >> ... if you like. > > I don't like. > What if * is not commutative ? > > (x^n) * x =/= x * (x^n) Might be the case, yes. So what? :-P But -hint- you talked about *associativity*, not about *commutativity*. :-) Trying to use crank strategies? .. .. ..