Deutsch   English   Français   Italiano  
<vqik0c$ca9t$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: New way of dealing with complex numbers
Date: Sun, 9 Mar 2025 00:31:24 +0100
Organization: A noiseless patient Spider
Lines: 41
Message-ID: <vqik0c$ca9t$1@dont-email.me>
References: <kRgli3QEdimCvJ9569p9c9pq7Kc@jntp> <vqemhv$2gck$1@news.muc.de>
 <h8RR2Nzw97n_q0rv1uxcQeGImmk@jntp> <vqfm6n$3ndao$2@dont-email.me>
 <pPxKmW5wI10Jy2mOG_Y_84dfZXg@jntp> <vqhanm$4cd3$1@dont-email.me>
 <8wfDWQnhQFqO9uBQ5h-nF8mcuFk@jntp> <vqhgtr$5je4$1@dont-email.me>
 <vqihdj$bkmo$2@dont-email.me> <vqihso$bkmo$3@dont-email.me>
 <vqijmt$b8c0$2@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 09 Mar 2025 00:31:24 +0100 (CET)
Injection-Info: dont-email.me; posting-host="10511604d5b70f470a56010831842feb";
	logging-data="403773"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+xrLRN31XOlYwxP8RvoFCo"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:4aXK8Mo3jC0DO7mlVjLhAgBAgD0=
In-Reply-To: <vqijmt$b8c0$2@dont-email.me>
Content-Language: de-DE
Bytes: 2382

Am 09.03.2025 um 00:26 schrieb efji:
> Le 08/03/2025 à 23:55, Moebius a écrit :
>> Am 08.03.2025 um 23:47 schrieb Moebius:
>>> Am 08.03.2025 um 14:32 schrieb efji:
>>>> Le 08/03/2025 à 14:18, Richard Hachel a écrit :
>>>
>>>> Associativity is MANDATORY to be able to write something like i^4 = 
>>>> i*i*i*i.
>>>>
>>>> For a non associative operator, i^4 means NOTHING.
>>>
>>> Oh, i^(n+1) just might mean (i^n) * i (with n e IN).
>>>
>>> [And i^0 = 1.]
>>>
>>> Then: i^4 = ((i*i)*i)*i.
>>>
>>> [Hint: recursive definition:
>>>   x^0 = 1
>>>   x^(n+1) = x^n * x   (for all n e IN)]
>>
>>      x^0 = 1
>>      x^(n+1) = (x^n) * x   (for all n e IN)]
>>
>> ... if you like.
> 
> I don't like.
> What if * is not commutative ?
> 
> (x^n) * x =/= x * (x^n)

Might be the case, yes. So what? :-P

But -hint- you talked about *associativity*, not about *commutativity*. :-)

Trying to use crank strategies?

..
..
..