Deutsch   English   Français   Italiano  
<vqiknp$b8c0$3@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: efji <efji@efi.efji>
Newsgroups: sci.math
Subject: Re: New way of dealing with complex numbers
Date: Sun, 9 Mar 2025 00:43:53 +0100
Organization: A noiseless patient Spider
Lines: 55
Message-ID: <vqiknp$b8c0$3@dont-email.me>
References: <kRgli3QEdimCvJ9569p9c9pq7Kc@jntp> <vqemhv$2gck$1@news.muc.de>
 <h8RR2Nzw97n_q0rv1uxcQeGImmk@jntp> <vqfm6n$3ndao$2@dont-email.me>
 <pPxKmW5wI10Jy2mOG_Y_84dfZXg@jntp> <vqhanm$4cd3$1@dont-email.me>
 <8wfDWQnhQFqO9uBQ5h-nF8mcuFk@jntp> <vqhgtr$5je4$1@dont-email.me>
 <vqihdj$bkmo$2@dont-email.me> <vqihso$bkmo$3@dont-email.me>
 <vqijmt$b8c0$2@dont-email.me> <vqik0c$ca9t$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 09 Mar 2025 00:43:53 +0100 (CET)
Injection-Info: dont-email.me; posting-host="46f014286ea6fe11ade7226b58030362";
	logging-data="369024"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18KC4IVq2EF849EDnxDbZnZ"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:is7IoCp1rhWxfXFr5+nNQF4uOcM=
In-Reply-To: <vqik0c$ca9t$1@dont-email.me>
Content-Language: fr, en-US
Bytes: 2947

Le 09/03/2025 à 00:31, Moebius a écrit :
> Am 09.03.2025 um 00:26 schrieb efji:
>> Le 08/03/2025 à 23:55, Moebius a écrit :
>>> Am 08.03.2025 um 23:47 schrieb Moebius:
>>>> Am 08.03.2025 um 14:32 schrieb efji:
>>>>> Le 08/03/2025 à 14:18, Richard Hachel a écrit :
>>>>
>>>>> Associativity is MANDATORY to be able to write something like i^4 = 
>>>>> i*i*i*i.
>>>>>
>>>>> For a non associative operator, i^4 means NOTHING.
>>>>
>>>> Oh, i^(n+1) just might mean (i^n) * i (with n e IN).
>>>>
>>>> [And i^0 = 1.]
>>>>
>>>> Then: i^4 = ((i*i)*i)*i.
>>>>
>>>> [Hint: recursive definition:
>>>>   x^0 = 1
>>>>   x^(n+1) = x^n * x   (for all n e IN)]
>>>
>>>      x^0 = 1
>>>      x^(n+1) = (x^n) * x   (for all n e IN)]
>>>
>>> ... if you like.
>>
>> I don't like.
>> What if * is not commutative ?
>>
>> (x^n) * x =/= x * (x^n)
> 
> Might be the case, yes. So what? :-P
> 
> But -hint- you talked about *associativity*, not about *commutativity*. :-)

I just pointed out the fact that the notation x^n is never used in the 
case of non associative operators because it is ambiguous without 
further definition. Think about the vector product in R^3 for example, 
which is not associative, and not commutative too. Nobody would write 
x^3 for (x \wedge x)\wedge x.

In the case of Hachel's delirium, the product is obviously associative, 
thus i^2 = -1 and i^4 = -1 makes no sense.

And of course, even with your recursive definition, it makes no sense.

> 
> Trying to use crank strategies?

fighting fire with fire :)


-- 
F.J.