Deutsch   English   Français   Italiano  
<vqikud$cgtp$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: New way of dealing with complex numbers
Date: Sun, 9 Mar 2025 00:47:25 +0100
Organization: A noiseless patient Spider
Lines: 57
Message-ID: <vqikud$cgtp$1@dont-email.me>
References: <kRgli3QEdimCvJ9569p9c9pq7Kc@jntp> <vqemhv$2gck$1@news.muc.de>
 <h8RR2Nzw97n_q0rv1uxcQeGImmk@jntp> <vqfm6n$3ndao$2@dont-email.me>
 <pPxKmW5wI10Jy2mOG_Y_84dfZXg@jntp> <vqhanm$4cd3$1@dont-email.me>
 <8wfDWQnhQFqO9uBQ5h-nF8mcuFk@jntp> <vqhgtr$5je4$1@dont-email.me>
 <vqihdj$bkmo$2@dont-email.me> <vqihso$bkmo$3@dont-email.me>
 <vqijmt$b8c0$2@dont-email.me> <vqik0c$ca9t$1@dont-email.me>
 <vqiknp$b8c0$3@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 09 Mar 2025 00:47:27 +0100 (CET)
Injection-Info: dont-email.me; posting-host="10511604d5b70f470a56010831842feb";
	logging-data="410553"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/Gt+JksXAGU2HCpkf2bWpU"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:j4Une150DFXm/d/VROHN6kZ+BQI=
Content-Language: de-DE
In-Reply-To: <vqiknp$b8c0$3@dont-email.me>
Bytes: 3125

Am 09.03.2025 um 00:43 schrieb efji:
> Le 09/03/2025 à 00:31, Moebius a écrit :
>> Am 09.03.2025 um 00:26 schrieb efji:
>>> Le 08/03/2025 à 23:55, Moebius a écrit :
>>>> Am 08.03.2025 um 23:47 schrieb Moebius:
>>>>> Am 08.03.2025 um 14:32 schrieb efji:
>>>>>> Le 08/03/2025 à 14:18, Richard Hachel a écrit :
>>>>>
>>>>>> Associativity is MANDATORY to be able to write something like i^4 
>>>>>> = i*i*i*i.
>>>>>>
>>>>>> For a non associative operator, i^4 means NOTHING.
>>>>>
>>>>> Oh, i^(n+1) just might mean (i^n) * i (with n e IN).
>>>>>
>>>>> [And i^0 = 1.]
>>>>>
>>>>> Then: i^4 = ((i*i)*i)*i.
>>>>>
>>>>> [Hint: recursive definition:
>>>>>   x^0 = 1
>>>>>   x^(n+1) = x^n * x   (for all n e IN)]
>>>>
>>>>      x^0 = 1
>>>>      x^(n+1) = (x^n) * x   (for all n e IN)]
>>>>
>>>> ... if you like.
>>>
>>> I don't like.
>>> What if * is not commutative ?
>>>
>>> (x^n) * x =/= x * (x^n)
>>
>> Might be the case, yes. So what? :-P
>>
>> But -hint- you talked about *associativity*, not about 
>> *commutativity*. :-)
> 
> I just pointed out the fact that the notation x^n is never used in the 
> case of non associative operators because it is ambiguous without 
> further definition. Think about the vector product in R^3 for example, 
> which is not associative, and not commutative too. Nobody would write 
> x^3 for (x \wedge x)\wedge x.
> 
> In the case of Hachel's delirium, the product is obviously associative, 
> thus i^2 = -1 and i^4 = -1 makes no sense.
> 
> And of course, even with your recursive definition, it makes no sense.
> 
>>
>> Trying to use crank strategies?
> 
> fighting fire with fire :)

:-P