| Deutsch English Français Italiano |
|
<vqo1bj$1kkf3$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.misty.com!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: The splendor of true Date: Mon, 10 Mar 2025 17:49:54 -0700 Organization: A noiseless patient Spider Lines: 41 Message-ID: <vqo1bj$1kkf3$2@dont-email.me> References: <iiAmPhnb6ZsFWL9UK83hB6x5ybc@jntp> <vqnl51$1i82g$1@dont-email.me> <gpYr5eUNsnuIlHzO4tsg1kWypUg@jntp> <pydQwEQ1pApHR5T4L_6AIjfTsGc@jntp> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 11 Mar 2025 01:49:56 +0100 (CET) Injection-Info: dont-email.me; posting-host="77500da324fcce57a578074132fa14ab"; logging-data="1724899"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18btZZad4jpNlmcpaV3BfQbT4j7xIvIhf4=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:2JxgYy3FZaE/92pMMWmuPCcqqAY= In-Reply-To: <pydQwEQ1pApHR5T4L_6AIjfTsGc@jntp> Content-Language: en-US Bytes: 2259 On 3/10/2025 4:19 PM, Python wrote: > Le 11/03/2025 à 00:09, Richard Hachel a écrit : >> Le 10/03/2025 à 22:21, "Chris M. Thomasson" a écrit : >>> On 3/8/2025 3:54 PM, Richard Hachel wrote: >> >> >> <http://nemoweb.net/jntp?gpYr5eUNsnuIlHzO4tsg1kWypUg@jntp/Data.Media:1> >> >> What is this? >> >> R.H. > > In C (complex numbers as defined in math i.e. R[X]/(X^2 + 1)) consider > the sequence : > (z_n and c are complex numbers) The one RH is reffering to is a special version of the set. I Mulia'ed it! lol. Here is one using a Julia set: https://i.ibb.co/kst5bmzX/image.png > > z_0 = 0 + 0i > z_(n+1) = (z_n)^2 + c > > if (z_(n)) does not go to infinity then c is a member of Mandelbrot's set > (it is also the set of c for which another set (Julia's set J_c) is > connexe) > > You can explore it there on line (zoom on the border, it is quite > fascinating) : > > https://mandel.gart.nz/ > > There the set itself is the black part, the colors at the border > represents how fast the sequence diverges. > >