Deutsch   English   Français   Italiano  
<vqo1bj$1kkf3$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.misty.com!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: The splendor of true
Date: Mon, 10 Mar 2025 17:49:54 -0700
Organization: A noiseless patient Spider
Lines: 41
Message-ID: <vqo1bj$1kkf3$2@dont-email.me>
References: <iiAmPhnb6ZsFWL9UK83hB6x5ybc@jntp> <vqnl51$1i82g$1@dont-email.me>
 <gpYr5eUNsnuIlHzO4tsg1kWypUg@jntp> <pydQwEQ1pApHR5T4L_6AIjfTsGc@jntp>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 11 Mar 2025 01:49:56 +0100 (CET)
Injection-Info: dont-email.me; posting-host="77500da324fcce57a578074132fa14ab";
	logging-data="1724899"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18btZZad4jpNlmcpaV3BfQbT4j7xIvIhf4="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:2JxgYy3FZaE/92pMMWmuPCcqqAY=
In-Reply-To: <pydQwEQ1pApHR5T4L_6AIjfTsGc@jntp>
Content-Language: en-US
Bytes: 2259

On 3/10/2025 4:19 PM, Python wrote:
> Le 11/03/2025 à 00:09, Richard Hachel a écrit :
>> Le 10/03/2025 à 22:21, "Chris M. Thomasson" a écrit :
>>> On 3/8/2025 3:54 PM, Richard Hachel wrote:
>>
>>
>> <http://nemoweb.net/jntp?gpYr5eUNsnuIlHzO4tsg1kWypUg@jntp/Data.Media:1>
>>
>> What is this?
>>
>> R.H. 
> 
> In C (complex numbers as defined in math i.e. R[X]/(X^2 + 1)) consider 
> the sequence :
> (z_n and c are complex numbers)

The one RH is reffering to is a special version of the set. I Mulia'ed 
it! lol. Here is one using a Julia set:

https://i.ibb.co/kst5bmzX/image.png



> 
> z_0 = 0 + 0i
> z_(n+1) = (z_n)^2 + c
> 
> if (z_(n)) does not go to infinity then c is a member of Mandelbrot's set
> (it is also the set of c for which another set (Julia's set J_c) is 
> connexe)
> 
> You can explore it there on line (zoom on the border, it is quite 
> fascinating) :
> 
> https://mandel.gart.nz/
> 
> There the set itself is the black part, the colors at the border 
> represents how fast the sequence diverges.
> 
>