Deutsch   English   Français   Italiano  
<vrboaj$2d16$3@news.muc.de>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!feeder3.eternal-september.org!news.szaf.org!news.karotte.org!news.space.net!news.muc.de!.POSTED.news.muc.de!not-for-mail
From: Alan Mackenzie <acm@muc.de>
Newsgroups: sci.math
Subject: Re: The non-existence of "dark numbers"
Date: Tue, 18 Mar 2025 12:18:27 -0000 (UTC)
Organization: muc.de e.V.
Message-ID: <vrboaj$2d16$3@news.muc.de>
References: <vqrbtd$1chb7$2@solani.org>   <vr3pvd$20r1$1@news.muc.de> <vr4cgl$3qbcs$3@dont-email.me> <vr6fgl$1uok$1@news.muc.de> <vr6tit$21dt9$1@dont-email.me> <vr71ea$qjf$1@news.muc.de> <vr774e$2a6rj$2@dont-email.me> <vr7ma8$2onbj$2@dont-email.me> <vr8arv$3dccd$1@dont-email.me> <vr9tha$pvuu$1@dont-email.me> <vr9url$q03i$2@dont-email.me> <vrbc8g$23ker$1@dont-email.me> <vrbek0$276rm$1@dont-email.me> <vrbfl1$27e67$1@dont-email.me> <vrbg13$28e26$1@dont-email.me> <vrbgkp$27e67$2@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: quoted-printable
Injection-Date: Tue, 18 Mar 2025 12:18:27 -0000 (UTC)
Injection-Info: news.muc.de; posting-host="news.muc.de:2001:608:1000::2";
	logging-data="78886"; mail-complaints-to="news-admin@muc.de"
User-Agent: tin/2.6.4-20241224 ("Helmsdale") (FreeBSD/14.2-RELEASE-p1 (amd64))

WM <wolfgang.mueckenheim@tha.de> wrote:
> On 18.03.2025 10:56, FromTheRafters wrote:
>> on 3/18/2025, WM supposed :

>>> The set is ordered and if it is actually infinite, then all its=20
>>> elements are there and=C2=A0 do not appear from nothing but then it h=
as a=20
>>> greatest element.

>> Nope, it is a limit ordinal.

> All elements of =E2=84=95 are there. That is the assumption. If no grea=
test can=20
> be identified, then the reason are dark numbers.

No, the reason is that there is no greatest element.  "Dark numbers" do
not exist, as has been proven in this thread.

> Otherwise only potential infinity could solve the dilemma.

There is no dilemma here.

"Potential infinity" doesn't exist in modern mathematics.  It was a
blind alley the pioneers of set theory drove up.  "Potential infinity"
isn't a useful concept and isn't needed in mathematics.

> Regards, WM

--=20
Alan Mackenzie (Nuremberg, Germany).