Deutsch   English   Français   Italiano  
<vrc8n0$2og7i$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: The non-existence of "dark numbers"
Date: Tue, 18 Mar 2025 17:58:09 +0100
Organization: A noiseless patient Spider
Lines: 61
Message-ID: <vrc8n0$2og7i$2@dont-email.me>
References: <vqrbtd$1chb7$2@solani.org> <vqucdi$36bb4$1@dont-email.me>
 <vqukqm$19g3$1@news.muc.de> <vqv0gq$3eapu$1@dont-email.me>
 <vqv62q$18mn$2@news.muc.de> <vr169k$18k4i$1@dont-email.me>
 <vr1bav$p45$1@news.muc.de> <vr1e8i$1er2v$1@dont-email.me>
 <vr1hig$5qt$1@news.muc.de> <vr29g3$23fi7$3@dont-email.me>
 <vr2d3k$jli$1@news.muc.de> <vr3fbu$1gbs1$3@solani.org>
 <vr3pvd$20r1$1@news.muc.de> <vr4cgl$3qbcs$3@dont-email.me>
 <vr6fgl$1uok$1@news.muc.de> <vr6tit$21dt9$1@dont-email.me>
 <0dcd52f8-c0ca-4e41-bb47-3a4e689f103e@att.net> <vr75vb$2a6rk$1@dont-email.me>
 <c60b35cb-33a8-40a7-ad7a-4c5841a6f454@att.net> <vr78ng$2a6rj$3@dont-email.me>
 <578344c0-4d58-4dcb-8a89-988e3e60f9d7@att.net> <vr7ivf$2jj8r$3@dont-email.me>
 <3a9f34ab-c270-4dfc-b23c-14741b68875b@att.net> <vr8a53$3dsos$1@dont-email.me>
 <3af4ba5e-63c6-4145-966c-67c832e127bc@att.net> <vr9him$bvhg$1@dont-email.me>
 <fc1d5825-1d93-4ac8-a6e4-e513cfce213a@att.net> <vrbcnf$23ker$2@dont-email.me>
 <ae5edd89-d5da-4ff4-a723-485cafa92582@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 18 Mar 2025 17:58:09 +0100 (CET)
Injection-Info: dont-email.me; posting-host="313413698f6833288f938498f23756af";
	logging-data="2900210"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX193ZGEaVOscK/kHOLrFsDyudiIO7LHRxkI="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:9TO9KQZ0l4itefuJJNtUUzAk6ic=
In-Reply-To: <ae5edd89-d5da-4ff4-a723-485cafa92582@att.net>
Content-Language: en-US
Bytes: 3917

On 18.03.2025 17:34, Jim Burns wrote:
> On 3/18/2025 5:00 AM, WM wrote:

>> Bob can only disappear in a set of finite size
>> because all exchanges appear at finite sizes.
> 
> Bob disappears from (is swapped from)
> each finite set A.
> Bob disappears to (is swapped to)
> a different finite set

Yes. But he never leaves the matrix!
> After all the swaps,
> without ever disappearing into
> anywhere other than a finite set,
> Bob disappears out of all finite sets.

No, that is impossible. If there is an "after all swaps", then all O 
have settled within the matrix. Lossless exchanges with losses are not 
allowed.
> 
> The swaps are ⟨n⇄n+1⟩ for all n,
> in order by n,
> in the emptiest inductive set.

Yes, for all n reachable by induction.
> 
>>> The set of all finite.sizes is same.sized as
>>> the set of all finite sizes and Bob.
>>
>> Give the index where Bob is lost.
> 
> Before all the swaps,
> Bob is not lost from all finite indices.

And all his infinitely many colleagues are also not lost from all finite 
indices.
> 
> After all the swaps,
> Bob is lost from all finite indices.

No, that is impossible. Here lies your mistake. The matrix has no drain! 
All X destinated to be exchanged with O are placed inside the matrix at 
the beginning.
> 
> There is no finite index,
> either visible or dark,
> from which Bob is last.lost,
> or to which Bob is last.lost.

That means he cannot get lost. All motions happen at finite indices. He 
remains in the matrix, but only the X's are visible after all:
XOOO... XXOO... XXOO... XXXO... ... XXXX...
XOOO... OOOO... XOOO... XOOO... ... XXXX...
XOOO... XOOO... OOOO... OOOO... ... XXXX...
XOOO... XOOO... XOOO... OOOO... ... XXXX...
...............................................................................

Regards, WM

Regards, WM