| Deutsch English Français Italiano |
|
<vrkkkj$2cdh8$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"] Date: Fri, 21 Mar 2025 22:10:43 +0100 Organization: A noiseless patient Spider Lines: 58 Message-ID: <vrkkkj$2cdh8$1@dont-email.me> References: <vqrbtd$1chb7$2@solani.org> <ae5edd89-d5da-4ff4-a723-485cafa92582@att.net> <vrc8n0$2og7i$2@dont-email.me> <0b8644b2-7027-420e-b187-8214daaf9e3b@att.net> <vrf5bp$1gcun$1@dont-email.me> <b3730bf7-bcd1-4698-b465-6d6ef190b29d@att.net> <vrgm1k$2s8c6$2@dont-email.me> <c81100d7-9354-4c8e-b216-e147cab9b41c@att.net> <vrhrlb$3ta8t$1@dont-email.me> <c0de7504-7d17-42f1-83e8-8767c0859c0c@att.net> <vrj5nh$12273$1@dont-email.me> <efbe60c5-6691-4fd6-8638-589fd95ec8a4@att.net> <vrkabi$233at$1@dont-email.me> <vrkca8$18dh$1@news.muc.de> <vrkf5b$279ci$1@dont-email.me> <vrkfnj$279ci$2@dont-email.me> <vrkg0r$279cj$1@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 21 Mar 2025 22:10:44 +0100 (CET) Injection-Info: dont-email.me; posting-host="1fe1706e9f690cb83ee95849cd29f0ec"; logging-data="2504232"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+OZEWmIFH7x8jNE4bnN238" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:zcimg8itWzCth9zaoYXYz4XhEk0= Content-Language: de-DE In-Reply-To: <vrkg0r$279cj$1@dont-email.me> Bytes: 4468 Am 21.03.2025 um 20:51 schrieb Moebius: > Am 21.03.2025 um 20:46 schrieb Moebius: >> Am 21.03.2025 um 20:37 schrieb Moebius: >>> Am 21.03.2025 um 19:48 schrieb Alan Mackenzie: >>>> WM <wolfgang.mueckenheim@tha.de> wrote: >>> >>>>> Learn that [...] Cantor [once] has [uttered] that the positive >>>>> numbers have more >>>>> reality than the even positive numbers. He said that is not in >>>>> conflict with the identical cardinality of both >>>>> sets. And he was right! >> >>>> I doubt very much Cantor said such rubbish. >> >>> Actually, WM is right here. But the notion of "more reality" clearly >>> wasn't meant as a technical term (by Cantor). He -Cantor- was just >>> trying to explain the mathematical fact that 2IN is a PROPER subset >>> of IN, while both sets still have the same cardinality. (I'd dare to >>> bet that this was the only time he ever used that phrase in this >>> context.) >> >> Her's the original quote: >> >> "Sei M die Gesamtheit (nü) aller endlichen Zahlen nü, M' die >> Gesamtheit (2nü) aller geraden Zahlen 2nü. Hier ist unbedingt richtig, >> daß >> M seiner Entität nach /reicher/ ist, als M'; enthält doch M außer den >> geraden Zahlen, aus welchen M' besteht, noch außerdem alle ungeraden >> Zahlen M''. Andererseits ist ebenso unbedingt richtig, daß den beiden >> Mengen M und M' nach Nr. 2 und 3 /dieselbe/ Kardinalzahl zukommt. Beides >> ist sicher und keines steht dem andern im Wege, wenn man nur auf die >> Distinktion von /Realität/ und /Zahl/ achtet. Man muß also sagen: /die >> Menge M hat mehr Realität wie M', weil sie M' und außerdem M'' als >> Bestandteile enthält; die den beiden Mengen M und M' zukommenden >> Kardinalzahlen sind aber gleich/." (G. Cantor) >> >> Google Translator: >> >> "Let M be the totality (nu) of all finite numbers nu, and M' the >> totality (2nu) of all even numbers 2nu. Here it is absolutely true >> that M is /richer/ than M' in its essence [entity]; after all, M >> contains, in addition to the even numbers of which M' consists, all >> the odd numbers M''. On the other hand, it is equally absolutely true >> that the two sets M and M', according to no. 2 and 3, have /the same/ >> cardinal number. Both are certain, and neither precludes the other, if >> one only pays attention to the distinction between /reality/ and / >> number/. One must therefore say: /the set M has more reality than M' >> because it contains M' and, in addition, M'' as components; but the >> cardinal numbers belonging to the two sets M and M' are equal/." > > Well, what can we say? Set theory in its infancy. Moreover, Cantor wasn't THAT good as a philosopher of mathematics. Frege was MUCH better. >>> Hint: WM is all about words.