Deutsch   English   Français   Italiano  
<vrsjnl$1p9li$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: The reality of sets, on a scale of 1 to 10 [Was: The
 non-existence of "dark numbers"]
Date: Mon, 24 Mar 2025 22:44:21 +0100
Organization: A noiseless patient Spider
Lines: 20
Message-ID: <vrsjnl$1p9li$1@dont-email.me>
References: <vqrbtd$1chb7$2@solani.org> <vrgm1k$2s8c6$2@dont-email.me>
 <c81100d7-9354-4c8e-b216-e147cab9b41c@att.net> <vrhrlb$3ta8t$1@dont-email.me>
 <c0de7504-7d17-42f1-83e8-8767c0859c0c@att.net> <vrj5nh$12273$1@dont-email.me>
 <efbe60c5-6691-4fd6-8638-589fd95ec8a4@att.net> <vrkabi$233at$1@dont-email.me>
 <vrkca8$18dh$1@news.muc.de> <vrlt7r$3hfcp$3@dont-email.me>
 <vrmg0s$308h$1@news.muc.de> <vrpfon$2q4gq$1@dont-email.me>
 <vrsf9n$1lg8$2@news.muc.de> <vrsgmo$1m479$1@dont-email.me>
 <vrshfs$1lg8$5@news.muc.de>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 24 Mar 2025 22:44:21 +0100 (CET)
Injection-Info: dont-email.me; posting-host="c8d33bf3036d3ff7f40cb6616576354d";
	logging-data="1877682"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19gBJ2zwoDZGi3/12yIKVF8"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:tX7A9hmgJb44RmtCZJ3gDEpnV1E=
Content-Language: de-DE
In-Reply-To: <vrshfs$1lg8$5@news.muc.de>
Bytes: 2155

Am 24.03.2025 um 22:06 schrieb Alan Mackenzie:

> The Wikipedia article describes [that natural density] it as a branch of
> number theory, not set theory.

Sure. But what do you expect from Mückenheim?

On the other hand... (lol)

"Die gesamte Mathematik inklusive der klassischen Zahlenbereiche läßt 
sich als Teilgebiet der Mengenlehre auffassen." ["All of mathematics, 
including classical number domains, can be regarded as a sub-field of 
set theory."] (A. Oberschelp, Aufbau des Zahhlensystems, 1968)

Lit.: https://en.wikipedia.org/wiki/Arnold_Oberschelp

..
..
..