Warning: mysqli::__construct(): (HY000/1203): User howardkn already has more than 'max_user_connections' active connections in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\includes\artfuncs.php on line 21
Failed to connect to MySQL: (1203) User howardkn already has more than 'max_user_connections' active connections
Warning: mysqli::query(): Couldn't fetch mysqli in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\index.php on line 66
Article <vsj0fu$1git1$1@dont-email.me>
Deutsch   English   Français   Italiano  
<vsj0fu$1git1$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Mikko <mikko.levanto@iki.fi>
Newsgroups: sci.logic
Subject: Re: Proving the consistency of the body of knowledge expressed in language
Date: Wed, 2 Apr 2025 12:37:02 +0300
Organization: -
Lines: 51
Message-ID: <vsj0fu$1git1$1@dont-email.me>
References: <vrfvbd$256og$2@dont-email.me> <vrjn82$1ilbe$2@dont-email.me> <vrmpc1$bnp3$1@dont-email.me> <vrmteo$cvat$6@dont-email.me> <vru000$33rof$1@dont-email.me> <vrug71$3gia2$6@dont-email.me> <0306c3c2d4a6d05a8bb7441c0b23d325aeac3d7b@i2pn2.org> <vrvnvv$ke3p$1@dont-email.me> <vs0egm$1cl6q$1@dont-email.me> <vs1f7j$296sp$2@dont-email.me> <vs3ad6$2o1a$1@dont-email.me> <vs4sjd$1c1ja$8@dont-email.me> <vs63o2$2nal3$1@dont-email.me> <vs6v2l$39556$17@dont-email.me> <vs8hia$13iam$1@dont-email.me> <vs8uoq$1fccq$2@dont-email.me> <vsb4in$14lqk$1@dont-email.me> <vsb9d5$19ka5$1@dont-email.me> <04aa9edbe77f4e701297d873264511f820d85526@i2pn2.org> <vsbu9j$1vihj$1@dont-email.me> <vsdlso$3shbn$2@dont-email.me> <vsen5l$th5g$5@dont-email.me> <vsg1b2$2ed9k$1@dont-email.me> <vsh9c9$3mdkb$2@dont-email.me> <3c542bc45e3edfbb46a0fee714003c202dd30773@i2pn2.org> <vshsfd$90ss$2@dont-email.me> <5291692f30e9ce584a11767533cd27d2070117a6@i2pn2.org> <vsi6gg$hvrs$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 02 Apr 2025 11:37:03 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="055d701cba1a9b23c93cc7bb592c3305";
	logging-data="1592225"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+z6uA3fHVSgtWunJKG6QSa"
User-Agent: Unison/2.2
Cancel-Lock: sha1:O4ZvlJ5J6Uo7xRFtK2i1KJtRSn0=
Bytes: 3683

On 2025-04-02 02:13:36 +0000, olcott said:

> On 4/1/2025 8:03 PM, Richard Damon wrote:
>> On 4/1/25 7:22 PM, olcott wrote:
>>> On 4/1/2025 5:30 PM, Richard Damon wrote:
>>>> On 4/1/25 1:56 PM, olcott wrote:
>>>>> On 4/1/2025 1:33 AM, Mikko wrote:
>>>>>> On 2025-03-31 18:33:26 +0000, olcott said:
>>>>>> 
>>>>>>> 
>>>>>>> Anything the contradicts basic facts or expressions
>>>>>>> semantically entailed from these basic facts is proven
>>>>>>> false.
>>>>>> 
>>>>>> Anything that follows from true sentences by a truth preserving
>>>>>> transformations is true. If you can prove that a true sentence
>>>>>> is false your system is unsound.
>>>>>> 
>>>>> 
>>>>> Ah so we finally agree on something.
>>>>> What about the "proof" that detecting inconsistent
>>>>> axioms is impossible? (I thought that I remebered this).
>>>>> 
>>>> 
>>>> No, the proof is that it is impossible to prove that a system is 
>>>> consistant. (sort of the opposite of what you are thinking of).
>>>> 
>>>> Proving inconsistancy is easy, you just need one example.
>>>> 
>>>> Proving the non-existance isn't as easy, and for a complicated enough 
>>>> system, can't be done, as you need to search an infinite space for the 
>>>> problem, which we can't be sure we have finished,
>>>> 
>>> 
>>> I have always only been referring to the consistency
>>> of a finite set of axioms. Just test each one against
>>> all the others. When we use a type hierarchy we only
>>> have to do this for axioms with compatible types.
>> 
>> And, if they can support the needed level of logic, Godel has shown 
>> that they can not prove their own consistancy.
>> 
> 
> How is it that each element of a finite set of axioms
> can not simply be tested against all of the others?

You can't do so if there is no test method.

-- 
Mikko