Deutsch   English   Français   Italiano  
<vsng73$27sdj$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Lawrence D'Oliveiro <ldo@nz.invalid>
Newsgroups: comp.theory
Subject: Re: Cantor Diagonal Proof
Date: Fri, 4 Apr 2025 02:29:55 -0000 (UTC)
Organization: A noiseless patient Spider
Lines: 16
Message-ID: <vsng73$27sdj$1@dont-email.me>
References: <vsn1fu$1p67k$1@dont-email.me>
	<7EKdnTIUz9UkpXL6nZ2dnZfqn_ednZ2d@brightview.co.uk>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 04 Apr 2025 04:29:56 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="a838268cadc40d8a0ecf633714aea4dd";
	logging-data="2355635"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+PRsFRr1QXm1MxZMUfWiVN"
User-Agent: Pan/0.162 (Pokrosvk)
Cancel-Lock: sha1:9hT1HwspGxxAso2sDSOleznXIX0=

On Fri, 4 Apr 2025 02:41:09 +0100, Mike Terry wrote:

> On 03/04/2025 23:18, Lawrence D'Oliveiro wrote:
>
>> The Cantor diagonal construction is an algorithm for computing an
>> incomputable number.
> 
> It is not an algorithm for computing something.  Algorithms are
> instructions that operate on finite inputs and must terminate with an
> answer at some point for every input.

The definition of a “computable number” is that for any integer N, there 
is an algorithm that will compute digit N of the number in a finite 
sequence of steps.

Does the Cantor diagonal construction fit this definition? Yes it does.