Deutsch English Français Italiano |
<vsng73$27sdj$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: Lawrence D'Oliveiro <ldo@nz.invalid> Newsgroups: comp.theory Subject: Re: Cantor Diagonal Proof Date: Fri, 4 Apr 2025 02:29:55 -0000 (UTC) Organization: A noiseless patient Spider Lines: 16 Message-ID: <vsng73$27sdj$1@dont-email.me> References: <vsn1fu$1p67k$1@dont-email.me> <7EKdnTIUz9UkpXL6nZ2dnZfqn_ednZ2d@brightview.co.uk> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Fri, 04 Apr 2025 04:29:56 +0200 (CEST) Injection-Info: dont-email.me; posting-host="a838268cadc40d8a0ecf633714aea4dd"; logging-data="2355635"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+PRsFRr1QXm1MxZMUfWiVN" User-Agent: Pan/0.162 (Pokrosvk) Cancel-Lock: sha1:9hT1HwspGxxAso2sDSOleznXIX0= On Fri, 4 Apr 2025 02:41:09 +0100, Mike Terry wrote: > On 03/04/2025 23:18, Lawrence D'Oliveiro wrote: > >> The Cantor diagonal construction is an algorithm for computing an >> incomputable number. > > It is not an algorithm for computing something. Algorithms are > instructions that operate on finite inputs and must terminate with an > answer at some point for every input. The definition of a “computable number” is that for any integer N, there is an algorithm that will compute digit N of the number in a finite sequence of steps. Does the Cantor diagonal construction fit this definition? Yes it does.