Deutsch   English   Français   Italiano  
<vsvv3h$36pju$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Lawrence D'Oliveiro <ldo@nz.invalid>
Newsgroups: comp.theory
Subject: Re: Cantor Diagonal Proof
Date: Mon, 7 Apr 2025 07:33:05 -0000 (UTC)
Organization: A noiseless patient Spider
Lines: 29
Message-ID: <vsvv3h$36pju$2@dont-email.me>
References: <vsn1fu$1p67k$1@dont-email.me>
	<7EKdnTIUz9UkpXL6nZ2dnZfqn_ednZ2d@brightview.co.uk>
	<vsng73$27sdj$1@dont-email.me>
	<gGKdnZiYPJVC03L6nZ2dnZfqn_udnZ2d@brightview.co.uk>
	<vsnk2v$2fc5a$1@dont-email.me> <vsnmtg$2i4qp$3@dont-email.me>
	<vsno7m$2g4cd$3@dont-email.me> <vsnp0o$2ka6o$2@dont-email.me>
	<vsnpv4$2g4cd$6@dont-email.me> <vsntes$2osdn$1@dont-email.me>
	<vsntv3$2paf9$1@dont-email.me> <vso1a0$2sf7o$1@dont-email.me>
	<vso2ff$2tj1d$2@dont-email.me> <vso3rj$2vems$2@dont-email.me>
	<vso4gh$2vg3b$1@dont-email.me> <vsqmlb$1ktm5$6@dont-email.me>
	<vsr1ae$1pr17$2@dont-email.me> <vst4nm$8daf$2@dont-email.me>
	<vst8ci$aeqh$3@dont-email.me> <vsutjt$21mp2$2@dont-email.me>
	<vsuvp1$227l5$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 07 Apr 2025 09:33:06 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="f78cf1e5c1ddc713eed346e8c1706a10";
	logging-data="3368574"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+QRhaO16eG+hOwAmsaa4Aw"
User-Agent: Pan/0.162 (Pokrosvk)
Cancel-Lock: sha1:iy5OBK1w+dX1leUqvRabNz+G9QE=
Bytes: 2482

On Sun, 6 Apr 2025 23:38:25 +0100, Richard Heathfield wrote:

> On 06/04/2025 23:01, Lawrence D'Oliveiro wrote:
>
>> On Sun, 6 Apr 2025 07:53:06 +0100, Richard Heathfield wrote:
>> 
>>> After infinitely many steps ...
>> 
>> I.e. never.
> 
> If you mean you can never know all the digits, hey, you're right. 
> No algorithm can derive the number. It's incomputable.

That’s not what “incomputable” means.

> But "never" is a strong word.

Like anything in mathematics, you need proof before claiming something.

This is why we have proof-by-induction: it’s essentially the only way to 
make generalized statements about infinite sequences. Instead of an 
infinite number of propositions to be proved, it boils the whole lot down 
to two:

    P(1)
    P(N) ⊢ P(N + 1)

I gave my proof-by-induction; it is up to you to try to tear it down. If 
you can.