| Deutsch English Français Italiano |
|
<vt74k1$1pl6i$5@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: Lawrence D'Oliveiro <ldo@nz.invalid> Newsgroups: comp.theory Subject: Re: Cantor Diagonal Proof Date: Thu, 10 Apr 2025 00:50:10 -0000 (UTC) Organization: A noiseless patient Spider Lines: 11 Message-ID: <vt74k1$1pl6i$5@dont-email.me> References: <vsn1fu$1p67k$1@dont-email.me> <vsnmtg$2i4qp$3@dont-email.me> <vsno7m$2g4cd$3@dont-email.me> <vsnp0o$2ka6o$2@dont-email.me> <vsnpv4$2g4cd$6@dont-email.me> <vsntes$2osdn$1@dont-email.me> <vsntv3$2paf9$1@dont-email.me> <vso1a0$2sf7o$1@dont-email.me> <vso2ff$2tj1d$2@dont-email.me> <vso3rj$2vems$2@dont-email.me> <vso4gh$2vg3b$1@dont-email.me> <vsqmlb$1ktm5$6@dont-email.me> <vsr1ae$1pr17$2@dont-email.me> <vst4nm$8daf$2@dont-email.me> <vst8ci$aeqh$3@dont-email.me> <vsutjt$21mp2$2@dont-email.me> <vsuvp1$227l5$1@dont-email.me> <vsvv3h$36pju$2@dont-email.me> <vt01u5$38f07$1@dont-email.me> <875xjfd5rs.fsf@nosuchdomain.example.com> <vt1jpa$n43m$4@dont-email.me> <87tt6zblzl.fsf@nosuchdomain.example.com> <0920ac6e196c1cebeff36d8b9431ee12a7b3d527@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Thu, 10 Apr 2025 02:50:10 +0200 (CEST) Injection-Info: dont-email.me; posting-host="2db6b81a4d73fd9d5766f02e33a0093e"; logging-data="1889490"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18z34KsI4RajHDPAzuN6N50" User-Agent: Pan/0.162 (Pokrosvk) Cancel-Lock: sha1:2fPiTN0iNa+3wdqtrUgOS24E7RY= On Mon, 7 Apr 2025 20:48:27 -0400, Richard Damon wrote: > The paper clearly talks about the process continuing indefinitely. Note the key point about any computation of a computable number is that the answer *converges* to the exact result in the limit. As you compute more and more digits, the discrepancy between your approximation and the correct answer can be made as close to zero as you like, just as long as you don’t ask for it to be zero. The Cantor construction does not converge.