Deutsch   English   Français   Italiano  
<vt74k1$1pl6i$5@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Lawrence D'Oliveiro <ldo@nz.invalid>
Newsgroups: comp.theory
Subject: Re: Cantor Diagonal Proof
Date: Thu, 10 Apr 2025 00:50:10 -0000 (UTC)
Organization: A noiseless patient Spider
Lines: 11
Message-ID: <vt74k1$1pl6i$5@dont-email.me>
References: <vsn1fu$1p67k$1@dont-email.me> <vsnmtg$2i4qp$3@dont-email.me>
	<vsno7m$2g4cd$3@dont-email.me> <vsnp0o$2ka6o$2@dont-email.me>
	<vsnpv4$2g4cd$6@dont-email.me> <vsntes$2osdn$1@dont-email.me>
	<vsntv3$2paf9$1@dont-email.me> <vso1a0$2sf7o$1@dont-email.me>
	<vso2ff$2tj1d$2@dont-email.me> <vso3rj$2vems$2@dont-email.me>
	<vso4gh$2vg3b$1@dont-email.me> <vsqmlb$1ktm5$6@dont-email.me>
	<vsr1ae$1pr17$2@dont-email.me> <vst4nm$8daf$2@dont-email.me>
	<vst8ci$aeqh$3@dont-email.me> <vsutjt$21mp2$2@dont-email.me>
	<vsuvp1$227l5$1@dont-email.me> <vsvv3h$36pju$2@dont-email.me>
	<vt01u5$38f07$1@dont-email.me> <875xjfd5rs.fsf@nosuchdomain.example.com>
	<vt1jpa$n43m$4@dont-email.me> <87tt6zblzl.fsf@nosuchdomain.example.com>
	<0920ac6e196c1cebeff36d8b9431ee12a7b3d527@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 10 Apr 2025 02:50:10 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="2db6b81a4d73fd9d5766f02e33a0093e";
	logging-data="1889490"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18z34KsI4RajHDPAzuN6N50"
User-Agent: Pan/0.162 (Pokrosvk)
Cancel-Lock: sha1:2fPiTN0iNa+3wdqtrUgOS24E7RY=

On Mon, 7 Apr 2025 20:48:27 -0400, Richard Damon wrote:

> The paper clearly talks about the process continuing indefinitely.

Note the key point about any computation of a computable number is that 
the answer *converges* to the exact result in the limit. As you compute 
more and more digits, the discrepancy between your approximation and the 
correct answer can be made as close to zero as you like, just as long as 
you don’t ask for it to be zero.

The Cantor construction does not converge.