Deutsch   English   Français   Italiano  
<vt77s3$1sprc$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Richard Heathfield <rjh@cpax.org.uk>
Newsgroups: comp.theory
Subject: Re: Cantor Diagonal Proof
Date: Thu, 10 Apr 2025 02:45:39 +0100
Organization: Fix this later
Lines: 23
Message-ID: <vt77s3$1sprc$2@dont-email.me>
References: <vsn1fu$1p67k$1@dont-email.me> <vsnmtg$2i4qp$3@dont-email.me>
 <vsno7m$2g4cd$3@dont-email.me> <vsnp0o$2ka6o$2@dont-email.me>
 <vsnpv4$2g4cd$6@dont-email.me> <vsntes$2osdn$1@dont-email.me>
 <vsntv3$2paf9$1@dont-email.me> <vso1a0$2sf7o$1@dont-email.me>
 <vso2ff$2tj1d$2@dont-email.me> <vso3rj$2vems$2@dont-email.me>
 <vso4gh$2vg3b$1@dont-email.me> <vsqmlb$1ktm5$6@dont-email.me>
 <vsr1ae$1pr17$2@dont-email.me> <vst4nm$8daf$2@dont-email.me>
 <vst8ci$aeqh$3@dont-email.me> <vsutjt$21mp2$2@dont-email.me>
 <vsuvp1$227l5$1@dont-email.me> <vsvv3h$36pju$2@dont-email.me>
 <vt01u5$38f07$1@dont-email.me> <875xjfd5rs.fsf@nosuchdomain.example.com>
 <vt1jpa$n43m$4@dont-email.me> <87tt6zblzl.fsf@nosuchdomain.example.com>
 <0920ac6e196c1cebeff36d8b9431ee12a7b3d527@i2pn2.org>
 <vt74k1$1pl6i$5@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 10 Apr 2025 03:45:40 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="3fff1669ce0240e544cc21f2a470e8cc";
	logging-data="1992556"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX192o872lORU6Fhe3TY08hfrhyefKg2J+C9CYclOjVQMkQ=="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:LEisknL8AJMcrqGknTM2Ycf8oTU=
Content-Language: en-GB
In-Reply-To: <vt74k1$1pl6i$5@dont-email.me>
Bytes: 2665

On 10/04/2025 01:50, Lawrence D'Oliveiro wrote:
> On Mon, 7 Apr 2025 20:48:27 -0400, Richard Damon wrote:
> 
>> The paper clearly talks about the process continuing indefinitely.
> 
> Note the key point about any computation of a computable number is that
> the answer *converges* to the exact result in the limit. As you compute
> more and more digits, the discrepancy between your approximation and the
> correct answer can be made as close to zero as you like, just as long as
> you don’t ask for it to be zero.
> 
> The Cantor construction does not converge.

It doesn't have to, because computing a number isn't its job. Its 
job is to explain why, no matter how many numbers you have, your 
list is at least one short.

-- 
Richard Heathfield
Email: rjh at cpax dot org dot uk
"Usenet is a strange place" - dmr 29 July 1999
Sig line 4 vacant - apply within