| Deutsch English Français Italiano |
|
<vt77s3$1sprc$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: Richard Heathfield <rjh@cpax.org.uk> Newsgroups: comp.theory Subject: Re: Cantor Diagonal Proof Date: Thu, 10 Apr 2025 02:45:39 +0100 Organization: Fix this later Lines: 23 Message-ID: <vt77s3$1sprc$2@dont-email.me> References: <vsn1fu$1p67k$1@dont-email.me> <vsnmtg$2i4qp$3@dont-email.me> <vsno7m$2g4cd$3@dont-email.me> <vsnp0o$2ka6o$2@dont-email.me> <vsnpv4$2g4cd$6@dont-email.me> <vsntes$2osdn$1@dont-email.me> <vsntv3$2paf9$1@dont-email.me> <vso1a0$2sf7o$1@dont-email.me> <vso2ff$2tj1d$2@dont-email.me> <vso3rj$2vems$2@dont-email.me> <vso4gh$2vg3b$1@dont-email.me> <vsqmlb$1ktm5$6@dont-email.me> <vsr1ae$1pr17$2@dont-email.me> <vst4nm$8daf$2@dont-email.me> <vst8ci$aeqh$3@dont-email.me> <vsutjt$21mp2$2@dont-email.me> <vsuvp1$227l5$1@dont-email.me> <vsvv3h$36pju$2@dont-email.me> <vt01u5$38f07$1@dont-email.me> <875xjfd5rs.fsf@nosuchdomain.example.com> <vt1jpa$n43m$4@dont-email.me> <87tt6zblzl.fsf@nosuchdomain.example.com> <0920ac6e196c1cebeff36d8b9431ee12a7b3d527@i2pn2.org> <vt74k1$1pl6i$5@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 10 Apr 2025 03:45:40 +0200 (CEST) Injection-Info: dont-email.me; posting-host="3fff1669ce0240e544cc21f2a470e8cc"; logging-data="1992556"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX192o872lORU6Fhe3TY08hfrhyefKg2J+C9CYclOjVQMkQ==" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:LEisknL8AJMcrqGknTM2Ycf8oTU= Content-Language: en-GB In-Reply-To: <vt74k1$1pl6i$5@dont-email.me> Bytes: 2665 On 10/04/2025 01:50, Lawrence D'Oliveiro wrote: > On Mon, 7 Apr 2025 20:48:27 -0400, Richard Damon wrote: > >> The paper clearly talks about the process continuing indefinitely. > > Note the key point about any computation of a computable number is that > the answer *converges* to the exact result in the limit. As you compute > more and more digits, the discrepancy between your approximation and the > correct answer can be made as close to zero as you like, just as long as > you don’t ask for it to be zero. > > The Cantor construction does not converge. It doesn't have to, because computing a number isn't its job. Its job is to explain why, no matter how many numbers you have, your list is at least one short. -- Richard Heathfield Email: rjh at cpax dot org dot uk "Usenet is a strange place" - dmr 29 July 1999 Sig line 4 vacant - apply within