Deutsch English Français Italiano |
<vt9nq3$5t7s$4@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: Lawrence D'Oliveiro <ldo@nz.invalid> Newsgroups: comp.theory Subject: Re: Cantor Diagonal Proof Date: Fri, 11 Apr 2025 00:29:56 -0000 (UTC) Organization: A noiseless patient Spider Lines: 21 Message-ID: <vt9nq3$5t7s$4@dont-email.me> References: <vsn1fu$1p67k$1@dont-email.me> <7EKdnTIUz9UkpXL6nZ2dnZfqn_ednZ2d@brightview.co.uk> <vsng73$27sdj$1@dont-email.me> <gGKdnZiYPJVC03L6nZ2dnZfqn_udnZ2d@brightview.co.uk> <vsnk2v$2fc5a$1@dont-email.me> <vsnmtg$2i4qp$3@dont-email.me> <vsno7m$2g4cd$3@dont-email.me> <vsnp0o$2ka6o$2@dont-email.me> <vsnpv4$2g4cd$6@dont-email.me> <vsntes$2osdn$1@dont-email.me> <vsntv3$2paf9$1@dont-email.me> <vso1a0$2sf7o$1@dont-email.me> <vso2ff$2tj1d$2@dont-email.me> <vso3rj$2vems$2@dont-email.me> <vso4gh$2vg3b$1@dont-email.me> <vsqmlb$1ktm5$6@dont-email.me> <vsr1ae$1pr17$2@dont-email.me> <vst4nm$8daf$2@dont-email.me> <vst8ci$aeqh$3@dont-email.me> <vsutjt$21mp2$2@dont-email.me> <vsuvp1$227l5$1@dont-email.me> <vsvv3h$36pju$2@dont-email.me> <vt01u5$38f07$1@dont-email.me> <875xjfd5rs.fsf@nosuchdomain.example.com> <vt1jpa$n43m$4@dont-email.me> <87tt6zblzl.fsf@nosuchdomain.example.com> <0920ac6e196c1cebeff36d8b9431ee12a7b3d527@i2pn2.org> <vt74k1$1pl6i$5@dont-email.me> <vt7sgd$2ht4t$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Fri, 11 Apr 2025 02:29:56 +0200 (CEST) Injection-Info: dont-email.me; posting-host="ad3a35b5daa6ea169a187dfe6eb4c019"; logging-data="193788"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+K8d8kQ1EigPs6G8BS/Xr8" User-Agent: Pan/0.162 (Pokrosvk) Cancel-Lock: sha1:9wrQLSgLIrcAYaU8e1+J/IqDKbA= On Thu, 10 Apr 2025 10:37:49 +0300, Mikko wrote: > On 2025-04-10 00:50:10 +0000, Lawrence D'Oliveiro said: > >> On Mon, 7 Apr 2025 20:48:27 -0400, Richard Damon wrote: >> >>> The paper clearly talks about the process continuing indefinitely. >> >> Note the key point about any computation of a computable number is that >> the answer *converges* to the exact result in the limit. As you compute >> more and more digits, the discrepancy between your approximation and >> the correct answer can be made as close to zero as you like, just as >> long as you don’t ask for it to be zero. >> >> The Cantor construction does not converge. > > If it is a computable number it does converge. That’s a key point of my proof: if it converges, then the number is already in the list. The only way it can come up with a number not in the list is by never converging.