| Deutsch English Français Italiano |
|
<vvuk9b$1k6qa$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: Richard Heathfield <rjh@cpax.org.uk> Newsgroups: comp.theory Subject: Re: How the requirements that Professor Sipser agreed to are exactly met Date: Tue, 13 May 2025 06:11:05 +0100 Organization: Fix this later Lines: 27 Message-ID: <vvuk9b$1k6qa$1@dont-email.me> References: <vvte01$14pca$29@dont-email.me> <vvte62$15ceh$18@dont-email.me> <vvtej1$181kg$1@dont-email.me> <vvtjj8$15ceh$19@dont-email.me> <vvtl1g$19cvp$1@dont-email.me> <vvtlmm$15ceh$20@dont-email.me> <vvto7c$1a1pf$1@dont-email.me> <vvtpqu$1agqu$1@dont-email.me> <vvtq8d$1a1pf$2@dont-email.me> <vvtqn1$1agqu$2@dont-email.me> <vvtsmf$1aube$1@dont-email.me> <vvtsq5$1agqu$3@dont-email.me> <vvttf7$1bfib$1@dont-email.me> <vvu008$1c062$1@dont-email.me> <vvu0mm$1c0vi$1@dont-email.me> <vvu0si$1c062$2@dont-email.me> <vvu1m8$1c86j$1@dont-email.me> <vvu2q2$1c062$3@dont-email.me> <vvu3ht$1c86j$3@dont-email.me> <vvu3lm$1c062$5@dont-email.me> <vvu42d$1cmbo$1@dont-email.me> <vvu46e$1c062$6@dont-email.me> <vvu5ch$1csst$1@dont-email.me> <vvu5j3$1c062$7@dont-email.me> <vvu5uk$1d27t$1@dont-email.me> <vvu88j$1c062$9@dont-email.me> <vvu95f$1deu5$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Tue, 13 May 2025 07:11:12 +0200 (CEST) Injection-Info: dont-email.me; posting-host="6985d97c0ee12080e7b93a3aa7ef3914"; logging-data="1710922"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/LZ5RNKRV2wfiyx4Z3D5AeIsX7u+QRkRGcPtkxDPZETA==" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:LfoDL503A3OuH/2t838Zg6wVotg= In-Reply-To: <vvu95f$1deu5$1@dont-email.me> Content-Language: en-GB On 13/05/2025 03:01, olcott wrote: > If the Goldbach conjecture is true (and there is > no short-cut) We don't know that. Fermat's Last Theorem had a short cut, but it took 358 years to find it. At that rate, we won't find Goldbach's short cut (if it has one) for another 75 years. > this requires testing against every > element of the set of natural numbers an infinite > computation. Only if it's true. So if it's true, the testing program will never halt. But if it's false, the tester will eventually find the counter-example, print it, and stop. So a program that can tell whether another program will halt can tell us whether Goldbach's conjecture is true. It would be the short cut that you say doesn't exist. -- Richard Heathfield Email: rjh at cpax dot org dot uk "Usenet is a strange place" - dmr 29 July 1999 Sig line 4 vacant - apply within