Deutsch English Français Italiano |
<y4r8oezlcGrtiun5aZFF17hBafo@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!feeds.phibee-telecom.net!2.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp Message-ID: <y4r8oezlcGrtiun5aZFF17hBafo@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: how References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <v00skm$1m94c$4@i2pn2.org> <x_NkVA7tC4PbuDHgWd_lI0r3UuA@jntp> <v012ji$1m94d$4@i2pn2.org> <MhMKLiWFUW2BGqeHumLSqLhBo1I@jntp> <v06q93$1uk1v$3@i2pn2.org> <Fr-J6IVJwWMeVOUV5nUftUgP93w@jntp> <v0934d$1q4ch$1@dont-email.me> <CQmyzwX2aN_N8Dqs9VfuA2QOQm0@jntp> <v0945k$1q5an$1@dont-email.me> Newsgroups: sci.math JNTP-HashClient: iCBxaKmWNeQvJ5MidVQ29hJj13s JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY JNTP-Uri: http://news2.nemoweb.net/?DataID=y4r8oezlcGrtiun5aZFF17hBafo@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Wed, 24 Apr 24 17:01:04 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="411700afb7b8328da2036d06eb2cf7416c98f7b6"; logging-data="2024-04-24T17:01:04Z/8829736"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2619 Lines: 44 Le 23/04/2024 à 22:03, Tom Bola a écrit : > WM schrieb: > >> Le 23/04/2024 à 21:45, Tom Bola a écrit : >>> WM schrieb: >>> >>>> Le 23/04/2024 à 01:01, Richard Damon a écrit : >>>>> On 4/22/24 10:15 AM, WM wrote: >>>> >>>>>> The results cannot be compressed to the interval (0, ω) of the set { 1, >>>>>> 2, 3, ...}. This shows that new numbers are generated by multiplication. >>>>>> >>>>> Of course they can be compressed into the interval (0, ω), as every >>>>> finite number n < ω, when doubled results in a finite number 2n which is >>>>> also < ω. >>>> >>>> Try to map the closed interval [0, ω]*2 = [0, ω*2]. >>> >>> f = >>> (0, 0), >>> (1, 2), >>> (2, 4), >>> (3, 6), >>> (..., ...), >>> (w, w*2) >> >> Indeed. When n reaches ω, 2n reaches ω2. > > I forgot the surrounding brackets {}... > > f = { > (0, 0), > (1, 2), > (2, 4), > (3, 6), > (..., ...), > (w, w*2) } > > If you want something else *you* are (the one) to define it. What is between ω and ω*2? Regards, WM