Warning: mysqli::__construct(): (HY000/1203): User howardkn already has more than 'max_user_connections' active connections in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\includes\artfuncs.php on line 21
Failed to connect to MySQL: (1203) User howardkn already has more than 'max_user_connections' active connections
Warning: mysqli::query(): Couldn't fetch mysqli in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\index.php on line 66
Article <yEN9mcjNSFCpZauAmq9PZpqTvbE@jntp>
Deutsch   English   Français   Italiano  
<yEN9mcjNSFCpZauAmq9PZpqTvbE@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!2.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp
Message-ID: <yEN9mcjNSFCpZauAmq9PZpqTvbE@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: how
References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <uv7609$n6lm$2@i2pn2.org> <0i01kKYhCcWwtJURV35AV3Oy16s@jntp>
 <44eaef1b-35be-4b50-900b-52b010ba9aa0@att.net> <_g9BcdiKQ1epFrcvM4FSF2rZkN8@jntp>
 <f4890eb5-e8df-4d98-a1ba-98c40f516df5@att.net> <HowGC2OIbH3GwJcRQBgR51F0vzM@jntp>
 <29c99292-805f-4f34-a1c8-ce1c7cd82f75@att.net> <WUdrtFzAGxMxA0R9q5J6yKSUZZk@jntp> <uvhdlb$3qhdi$1@dont-email.me>
Newsgroups: sci.math
JNTP-HashClient: gQMP2V0fxrTcfSv-cExHpH3ZP-g
JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY
JNTP-Uri: http://news2.nemoweb.net/?DataID=yEN9mcjNSFCpZauAmq9PZpqTvbE@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Mon, 15 Apr 24 11:53:14 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="649daec9527d00fb227e738c133438fae4eb4c2e"; logging-data="2024-04-15T11:53:14Z/8817856"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 2218
Lines: 27

Le 14/04/2024 à 22:17, Tom Bola a écrit :
> WM schrieb:
> 
>> Le 13/04/2024 à 21:16, Jim Burns a écrit :
>>> On 4/13/2024 8:35 AM, WM wrote:
>> 
>>>> What elements of {1, 2, 3, ..., ω}*2
>>>> fall between ω and ω*2?
>>>> Their distances must be 2.
>>> 
>>> Why 2 ?
>> 
>> Doubling of ordinals 
> 
> The smallest ordinals behind all n in IN possible 
> would be the w's in something like 
> 
> {0, 1, 2, 3, ..., w, w+1, w+2, w+3, ... w+w}
> 
> which, under f(n)=n*2, has the image
> 
> {0, 2, 4, 6, ..., w*2, w*2+2, w*2+4, w*2+4, ... w*2+w*2}

Right! But ω remains like 6 remains.

Regards, WM