Deutsch English Français Italiano |
<yEN9mcjNSFCpZauAmq9PZpqTvbE@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!2.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp Message-ID: <yEN9mcjNSFCpZauAmq9PZpqTvbE@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: how References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <uv7609$n6lm$2@i2pn2.org> <0i01kKYhCcWwtJURV35AV3Oy16s@jntp> <44eaef1b-35be-4b50-900b-52b010ba9aa0@att.net> <_g9BcdiKQ1epFrcvM4FSF2rZkN8@jntp> <f4890eb5-e8df-4d98-a1ba-98c40f516df5@att.net> <HowGC2OIbH3GwJcRQBgR51F0vzM@jntp> <29c99292-805f-4f34-a1c8-ce1c7cd82f75@att.net> <WUdrtFzAGxMxA0R9q5J6yKSUZZk@jntp> <uvhdlb$3qhdi$1@dont-email.me> Newsgroups: sci.math JNTP-HashClient: gQMP2V0fxrTcfSv-cExHpH3ZP-g JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY JNTP-Uri: http://news2.nemoweb.net/?DataID=yEN9mcjNSFCpZauAmq9PZpqTvbE@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Mon, 15 Apr 24 11:53:14 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="649daec9527d00fb227e738c133438fae4eb4c2e"; logging-data="2024-04-15T11:53:14Z/8817856"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2218 Lines: 27 Le 14/04/2024 à 22:17, Tom Bola a écrit : > WM schrieb: > >> Le 13/04/2024 à 21:16, Jim Burns a écrit : >>> On 4/13/2024 8:35 AM, WM wrote: >> >>>> What elements of {1, 2, 3, ..., ω}*2 >>>> fall between ω and ω*2? >>>> Their distances must be 2. >>> >>> Why 2 ? >> >> Doubling of ordinals > > The smallest ordinals behind all n in IN possible > would be the w's in something like > > {0, 1, 2, 3, ..., w, w+1, w+2, w+3, ... w+w} > > which, under f(n)=n*2, has the image > > {0, 2, 4, 6, ..., w*2, w*2+2, w*2+4, w*2+4, ... w*2+w*2} Right! But ω remains like 6 remains. Regards, WM