Deutsch   English   Français   Italiano  
<r5cqn7jlDB834GwAumGMNNExGDY@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp
Message-ID: <r5cqn7jlDB834GwAumGMNNExGDY@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: =?UTF-8?Q?Cha=C3=AEnage=20des=20causalit=C3=A9s=20optiques=20en=20milieu?= 
 =?UTF-8?Q?=20r=C3=A9fringent=20=3F?=
Newsgroups: fr.sci.physique,fr.sci.astronomie
JNTP-HashClient: K6aZTnE-xu_hm1Mrh2GJK0EYOM4
JNTP-ThreadID: T997SDyDnxmBIESfYWnDEhkz7Ng
JNTP-Uri: http://news2.nemoweb.net/?DataID=r5cqn7jlDB834GwAumGMNNExGDY@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Fri, 18 Mar 22 14:26:13 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:98.0) Gecko/20100101 Firefox/98.0
Injection-Info: news2.nemoweb.net; posting-host="8a0233ee6e6a709f29713e8f897284bd28371148"; logging-data="2022-03-18T14:26:13Z/6717703"; posting-account="34@news2.nemoweb.net"; mail-complaints-to="newsmaster@news2.nemoweb.net"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: =?UTF-8?Q?JC=5FLavau?= <jcl@invalid>
Bytes: 9456
Lines: 160

Chaînage des causalités optiques en milieu réfringent ?
 

Nous avions vu dans l’article précédent que dans l’humeur vitreuse 
de l’œil, la causalité s’écoule surtout à rebrousse-macro-temps, 
depuis l’opsine et son cis-rétinal vers le faisceau incident tel 
qu’il arrive vers la cornée. Cela pour chaque photon, ou onde 
individuelle.

Article précédent : 
https://www.agoravox.fr/culture-loisirs/culture/article/une-preuve-definitive-par-l-205808

Question : Et qu’arrive-t-il lorsque le milieu réfringent est de grande 
étendue ? Par exemple sous l’eau, ou dans une fibre optique de grande 
longueur ? La causalité s’écoule-t-elle toujours dans les deux sens, 
rétrochrone et orthochrone, selon les principes de la microphysique 
transactionnelle ? Or un tel milieu nous fait sortir du cône relativiste 
de lumière, enseigné partout, où le macro-univers se partage entre 
passé, avenir et ailleurs.

Il faut investiguer les faits expérimentaux déjà disponibles.

Je vous rassure tout de suite : que je porte un hublot plan ou un hublot 
correcteur de ma myopie, sous l’eau aussi je vois toujours les mêmes 
couleurs et la même luminosité dans les deux cas. Seule la netteté 
change selon les distances. Aucun changement donc avec les prévisions 
transactionnelles.

En revanche, nous pouvons régler le sort d’une des narratives 
concernant la propagation de la lumière dans les milieux transparents et 
réfringents : celle qui prédit que l’avant du train d’onde 
continuerait de se propager à la vitesse de la lumière dans le vide, 
mais avec une amplitude imperceptible, tandis que le gros de l’onde, 
seul perceptible, est ralenti conformément à l’indice de réfraction. 
Cette narrative ne s’appuie sur aucun fait expérimental, mais extrapole 
à partir du postulat qu’un atome, ce serait presque tout du trou, un 
immense vide juste parcouru par quelques corpuscules femtométriques qui 
par miracle seraient des électrons. Postulat insoutenable, violemment 
contrafactuel.
 
Cette narrative est aussi incompatible avec la conservation des fronts 
d’ondes (pour chaque photon) sur un grand parcours, que ce soit dans 
l’eau ou a fortiori dans une fibre optique. Prenons une fibre optique de 
3 km, avec un indice de réfraction de 1,5. Sur cette distance, le gros de 
l’enveloppe de l’onde prendrait un retard d’un kilomètre sur son 
début, soit un milliard de longueurs d’onde dans le proche infrarouge 
à 1 µm. Hem ! Impossible de conserver la cohérence d’un seul photon, 
de chaque photon.

Cette narrative est aussi incompatible avec la longueur de cohérence 
observée de chaque photon, dont on sait par des expériences 
d’interférence à grande différence de parcours optique, qu’elle 
plafonne vers le mètre dans l’air pour les photons du domaine visible, 
émis par des moyens anté-lasers, par exemple par un tube luminescent à 
gaz – soit en gros les deux millions de périodes.

En conclusion, en milieu réfringent, chaque photon conserve sa longueur 
de cohérence, comptée en nombre de longueurs d’ondes, ou nombre de 
périodes ; et cela de l’émetteur jusqu’à l’absorbeur.

Ainsi munis sur le plan théorique, pouvons nous revisiter l’expérience 
de Hippolyte Fizeau, réalisée en 1851, qui mesura la variation de 
vitesse de la lumière selon que l’eau se déplace dans le sens de 
propagation, ou en sens inverse ?

Publication originale : https://gallica.bnf.fr/ark 
:/12148/bpt6k347981/f381.item

Désolé, pas de figures dans la publication historique, seulement une 
description minutieuse.

Le dispositif de Fizeau consiste en deux tubes parallèles, où de l’eau 
circule de droite à gauche dans l’un, de gauche à droite dans 
l’autre. Depuis une source puis un miroir semi-réfléchissant, la 
lumière est partagée en deux trajets, l’un vers le tube où l’eau 
s’approche de la source, l’autre vers le tube où l’eau s’éloigne 
de la source. Chaque tube est fermé aux extrémités par une glace 
perpendiculaire au trajet lumineux. Au bout du parcours, un miroir renvoie 
chaque faisceau vers l’autre tube. Plus ce qu’il faut de prismes 
déviateurs et d’optiques de refocalisation. En fin de parcours après 
le miroir semi-réfléchissant franchi à l’entrée, on mesure le 
déplacement des franges d’interférence selon la vitesse de l’eau 
dans les deux tubes.

La théorie correcte n’arriva que cinquante-quatre ans plus tard, par 
Albert Einstein. Le point clé est que l’indice de réfraction n, ici de 
l’eau, est le quotient de la célérité de la lumière dans le vide, 
par la célérité dans le milieu réfringent traversé. Certes, dans 
l’eau immobile, les fronts d’onde (pour chaque photon) sont resserrés 
d’un rapport 3/4 environ, inverse de l’indice de réfraction. Mais si 
l’eau est en mouvement contre le sens de propagation de la lumière, 
cette fréquence spatiale est augmentée, selon l’effet Doppler-Fizeau ; 
deux énoncés équivalents, l’un est que l’indice optique est 
augmenté par le mouvement, l’autre est que la vitesse de propagation 
(par rapport au repère du laboratoire) est ralentie, encore plus ralentie 
que par le milieu optique immobile.

Le seul calcul à faire est de traduire la vitesse de propagation de la 
lumière dans le milieu en mouvement (l’eau ici) depuis le repère en 
mouvement, vers le repère du laboratoire. Ce calcul est nécessairement 
relativiste, pour coller avec les résultats expérimentaux.

Notations :

n = indice de réfraction (pour la fréquence lumineuse présente dans 
l’expérience)

b = vitesse de la lumière dans le milieu réfringent, dans le repère 
lié à ce milieu réfringent = c/n

Où c est évidemment la célérité de la lumière dans le vide.

v = vitesse du milieu réfringent, dans la direction parallèle à la 
propagation de la lumière, et comptée dans le repère du laboratoire.

b’ = vitesse apparente de la lumière dans le milieu réfringent en 
mouvement, mais vue du repère du laboratoire.

Pour dépouiller l’expérience complète, avec déplacement des franges 
d’interférences, nous aurions aussi besoin de la longueur de tube 
d’eau en mouvement, et de la longueur d’onde de la lumière utilisée, 
aussi monochromatique que possible ; il nous faudrait aussi la distance du 
miroir semi-réfléchissant à l’écran ou au ccd détecteur. Nous ne 
nous en occuperons pas ici.

Loi de l’addition des vitesses colinéaires en relativité :

b’ = (b + v)/(1 + vb/(c2)) = (b + v)/(1 + v/(nc))

Or b est très petit devant c, nous pouvons donc développer la fraction 
au premier ordre :

b’ ≈ (b + v) (1 - v/(nc)) = b + v (1 - 1/n2), soit exactement le 
résultat observé par Fizeau en 1851.

Ce résultat expérimental est une vérification directe du théorème 
d’addition des vitesses relativistes.

L’astronome amateur, confronté aux effets optiques de la turbulence 
atmosphérique, aimerait bien comparer cet effet Fizeau aux autres effets 
des fluctuations de densité dans un air turbulent. Avis aux amateurs !


Conclusion
Nous avons continué ici la confrontation de tous les faits expérimentaux 
connus en optique et en électromagnétisme avec les principes de la 
microphysique (quantique) transactionnelle. Toujours aucune alerte, aucun 
démenti expérimental ne sont détectés, ici dans le chaînage 
bidirectionnel des causalités à travers un milieu réfringent de grande 
longueur optique. Y compris dans l’expérience de Fizeau en 1851.

 
Abstract
Yet another probe of the coherence of the principles of the Transactional 
(Quantic) Microphysics with any known corpus of experimental facts, here 
the bidirectional chain of causalities in the propagation of photons (= 
individual waves) in a long refringent medium, especially in the Fizeau 
(1851) experiment.


Jacques Lavau