Warning: mysqli::__construct(): (HY000/1203): User howardkn already has more than 'max_user_connections' active connections in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\includes\artfuncs.php on line 21
Failed to connect to MySQL: (1203) User howardkn already has more than 'max_user_connections' active connectionsPath: ...!weretis.net!feeder6.news.weretis.net!feeder8.news.weretis.net!usenet.pasdenom.info!from-devjntp
Message-ID: <9ti6Y3s5Sm3yeoodalYH2gD64qE@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: Puissance complexe
References:
Newsgroups: fr.sci.maths
JNTP-HashClient: Cvk_z6xssoEFmEnJTabxfdphJ7w
JNTP-ThreadID: 0n0919F69IreuR1l8nnlTNB_YYY
JNTP-Uri: http://news2.nemoweb.net/?DataID=9ti6Y3s5Sm3yeoodalYH2gD64qE@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Mon, 20 Dec 21 21:45:50 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="5c7cc3dd4d5b02ab9eeda727c1c7bf4fa8cd7732"; logging-data="2021-12-20T21:45:50Z/6408118"; posting-account="1@news2.nemoweb.net"; mail-complaints-to="newsmaster@news2.nemoweb.net"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: Julien Arlandis
Bytes: 2667
Lines: 35
Le 20/12/2021 à 22:41, Samuel DEVULDER a écrit :
> Le 20/12/2021 à 22:30, Julien Arlandis a écrit :
>> Si je dois évaluer sqrt(1), je vois 2 possibilités :
>>
>> 1) sqrt(1) = 1^(1/2) = exp(1/2*ln(1)) =
>> exp(1/2*0)
>> = exp(0)
>> = 1
>
> Attention ln(1) c'est 0 [mod 2pi*i] donc 0 + 2pi*k*i
>
> Je reprends: sqrt(1) = 1^(1/2) = exp(1/2*ln(1)) = exp(1/2*2pi*k*i) =
> exp(k*pi*i) = +/- 1 suivant la parité de k
>
>>
>> 2) sqrt(1) = 1^(1/2)
>> = (exp(2*i*k*pi))^(1/2)
>> = exp(1/2*ln(exp(2*i*k*pi)))
>> = exp(1/2*2*i*k*pi)
>> = exp(i*k*pi)
>> = 1 ou -1
>
> Tout pareil !
>
> Le truc est de bien voir que ln(x) est un truc qui retourne un résultat
> "mod 2pi*i".
>
> sam.
La seconde approche c'est celle que j'avais utilisé pour calculer que 1^x
= exp(2*i*k*pi*x), mais toi tu l'avais contesté en utilisant la première
approche, je te cite :
"1^x = exp(x*ln(1)) or ln(1)=0,
donc 1^x = exp(x*0) = exp(0) = 1"
Donc retour à la case départ :)