Path: ...!2.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius Newsgroups: sci.math Subject: Re: Does the number of nines increase? Date: Tue, 9 Jul 2024 23:07:59 +0200 Organization: A noiseless patient Spider Lines: 14 Message-ID: References: <206ac30e-6ba5-46f2-978e-59182f946547@att.net> <38fbe173-2081-49a4-89d5-d1470f754565@att.net> <69d5b220-850b-4faa-b9b4-b25cd74d1666@att.net> <02WQWLab8x41L6XRW0n7Ba0poZ8@jntp> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Tue, 09 Jul 2024 23:08:00 +0200 (CEST) Injection-Info: dont-email.me; posting-host="581d72232c13daa8d7f7e856bb4589fd"; logging-data="1620529"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18CSMuXIwFX75cXXqCuxvku" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:ZJ3DE+q1mu2nx/EhdBb2akAPtw4= In-Reply-To: Content-Language: de-DE Bytes: 2113 Am 09.07.2024 um 22:10 schrieb Chris M. Thomasson: > On 7/9/2024 3:11 AM, FromTheRafters wrote: > Does that mean there are as many rationals as there are reals? I already told you that: The set of rational numbers is countable infinite while the set of real numbers is _uncountable_. Again: One of my math professors once tried to express this state of affairs the following way: "There are (in a certain sense) much more real numbers than rational numbers." See: https://en.wikipedia.org/wiki/Countable_set and: https://en.wikipedia.org/wiki/Uncountable_set