Path: ...!news.nobody.at!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius Newsgroups: sci.math Subject: Re: Does the number of nines increase? Date: Thu, 11 Jul 2024 02:03:45 +0200 Organization: A noiseless patient Spider Lines: 46 Message-ID: References: <206ac30e-6ba5-46f2-978e-59182f946547@att.net> <38fbe173-2081-49a4-89d5-d1470f754565@att.net> <69d5b220-850b-4faa-b9b4-b25cd74d1666@att.net> <02WQWLab8x41L6XRW0n7Ba0poZ8@jntp> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Thu, 11 Jul 2024 02:03:46 +0200 (CEST) Injection-Info: dont-email.me; posting-host="2b43c9dd34f25362f42493cf5322921d"; logging-data="2231504"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19bOtE2BuLPcOzac0jmafVO" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:sJoNxVcy9iGiMR96vJnaLpcz2i4= In-Reply-To: Content-Language: de-DE Bytes: 2919 Am 11.07.2024 um 01:37 schrieb Chris M. Thomasson: > On 7/10/2024 3:55 PM, Moebius wrote: >> Am 11.07.2024 um 00:26 schrieb Chris M. Thomasson: >> >>> (1, 1.4, 1.41, 1.414, ...) >>> >>> For each element [term] [in (1, 1.4, 1.41, 1.414, ...)] there is a rational that can represent it. >> >> Well, A = A? Agree! Hint: All elements/terms in (1, 1.4, 1.41, 1.414, ...) are rational numbers. :-) > Should I add in the word finite here: > > For each _finite_ element there is a rational that can represent it. Nope. After all, each and every element (term) in (1, 1.4, 1.41, 1.414, ....) is "finite" (sort of).*) So you wont't get anything (meaningful) by adding "finite" in this context. > Any clearer, or does it add mud to the clear waters? It's just "superfluous" (imho). :-P >>> No single rational can represent the whole... >> >> Right! >> >> Otherwise the question would be: Which one? :-) >> >>> However, a real can represent [...] the whole... >> >> Exactly! (!!!) >> >>> Fair enough? >> >> Sure! See?! __________________________________ *) i.e. is equal to to some n/m where n,m e IN.