Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius Newsgroups: sci.math Subject: Re: Does the number of nines increase? Date: Tue, 9 Jul 2024 23:17:51 +0200 Organization: A noiseless patient Spider Lines: 42 Message-ID: References: <72984017b5af15267bdcd281564efdd028083003@i2pn2.org> <_Vg1U_Mf84asRBWfLUWkNE6XpV0@jntp> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 09 Jul 2024 23:17:52 +0200 (CEST) Injection-Info: dont-email.me; posting-host="581d72232c13daa8d7f7e856bb4589fd"; logging-data="1620530"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/gkcQYORyEmioLZ3cIjcny" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:SsvIbhmmMIvZw8yL9Kfu2vqK+2w= Content-Language: de-DE In-Reply-To: Bytes: 2772 Am 09.07.2024 um 22:42 schrieb Chris M. Thomasson: > On 7/9/2024 9:53 AM, WM wrote: >> Le 09/07/2024 à 16:35, Moebius a écrit : >>> Am 09.07.2024 um 15:23 schrieb joes: >>>> Am Tue, 09 Jul 2024 11:49:21 +0000 schrieb WM: >>> >>>>> many don't understand that ℵo unit fractions cannot occupy a distance >>>>> smaller than all positive distances. Can you? >>> >>>> What does this mean? It should read "smaller than ANY". >>> >>> Es bedeutet, dass Mückenheim (in diesem Kontext) nicht zwischen AxEy >>> und EyAx unterscheiden kann. >> >> That is nonsense. Either there is a first unit fraction or this is not >> the case. > > There is a first unit fraction at 1/1. However, there is no last unit > fraction... :^) No, with "first" he means a "smallest" unit fraction. Hence from this point of view 1/1 is the "last" (i.e. largest) unit fraction. ... < 1/3 < 1/2 < 1/1. WM's claim is that there is a unit fraction WM such that Au e {1/n : n e IN}: WM <= u In other words: WM < ... < 1/3 < 1/2 < 1/1 , such that there is no unit fraction u with u < WM < ... < 1/3 < 1/2 < 1/1 . Of course, this doesn't MAKE any sense (i.e. is bullshit). After all, 1/(1/WM + 1) would be a unit fraction with 1/(1/WM + 1) < WM < ... < 1/3 < 1/2 < 1/1 .