Path: ...!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius Newsgroups: sci.math Subject: Re: How many different unit fractions are lessorequal than all unit fractions? Date: Mon, 9 Sep 2024 18:26:32 +0200 Organization: A noiseless patient Spider Lines: 34 Message-ID: References: <5d8b4ac0-3060-40df-8534-3e04bb77c12d@att.net> <7e1e3f62-1fba-4484-8e34-6ff8f1e54625@att.net> <06ee7920-eff2-4687-be98-67a89b301c93@att.net> <38ypmjbnu3EfnKYR4tSIu-WavbA@jntp> <34e11216-439f-4b11-bdff-1a252ac98f8f@att.net> <27b3b5e088d82d4475c68a64f50a4bccac9c6f29@i2pn2.org> <035b16b56a204dfe5e561b3cfe03238167dba39a@i2pn2.org> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 09 Sep 2024 18:26:33 +0200 (CEST) Injection-Info: dont-email.me; posting-host="08c9a2b7e7a7b16f619a598c25c8174f"; logging-data="2608826"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/exvnxKMZNE97fiG/wVtW2" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:KjGiVGi08cCmRRLjY11D1m0eyWM= Content-Language: de-DE In-Reply-To: Bytes: 3122 Am 09.09.2024 um 17:27 schrieb Python: > Le 09/09/2024 à 17:15, Crank Mückenheim, aka WM a écrit : >> On 09.09.2024 16:32, Python wrote: >>> Le 09/09/2024 à 12:19, Crank Mückenheim, aka WM a écrit : >> >>>> ℵo unit fractions cannot fit into one of the ℵo intervals between >>>> two of them. >>> >>> (O, x) is NOT an interval between two unit fractions. >> >> 1/n - 1/(n+1) = x is an interval between two unit fraction. [WM} > > No. It is a number. Right. Actually, it's a unit fraction! :-) | x = 1/k - 1/(k+1) = 1/[k*(k+1)] > 0 Hence x = 1/[k*(k+1)] e {1/n : n e IN}. >> This interval is shifted to the origin, yielding the interval (0, x). >> It does not contain ℵo unit fractions. It does not contain 1/n. > > 1/n is not in (0, x). Sure. So what? Nevertheless there are Aleph_0 unit > fractions in (0, x). No need for 1/n to be there, there far enough other > fractions. Right, for example the infinitely many unit fractions 1/(1/x + 1), 1/(1/x + 2), 1/(1/x + 3), ... :-P What a crank. "Teaching" at a "Hochschule".