Path: ...!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius Newsgroups: sci.math Subject: Re: More complex numbers than reals? Date: Thu, 11 Jul 2024 02:31:15 +0200 Organization: A noiseless patient Spider Lines: 32 Message-ID: References: <87msmqrbaq.fsf@bsb.me.uk> <0dUETcjzkRZSIY0ZGKDH2IRJuYQ@jntp> <87v81epj5v.fsf@bsb.me.uk> <878qyap1tg.fsf@bsb.me.uk> <871q40olca.fsf@bsb.me.uk> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 11 Jul 2024 02:31:15 +0200 (CEST) Injection-Info: dont-email.me; posting-host="2b43c9dd34f25362f42493cf5322921d"; logging-data="2231504"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+NkL4bObxG63d4yG/TaZRn" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:kWaUp4agd5zkjPPDYEAJI8af0N4= In-Reply-To: Content-Language: de-DE Bytes: 2295 Am 11.07.2024 um 02:28 schrieb Chris M. Thomasson: > On 7/10/2024 5:24 PM, Moebius wrote: >> Am 11.07.2024 um 02:16 schrieb Chris M. Thomasson: >> >>> {a, b, c} vs { 3, 4, 5 } >>> >>> Both have the same number of elements, [...] >> >> HOW do you know that? Please define (for any sets A, B): >> >>      A and B /have the same number of elements/ iff ___________________ . >> >> (i.e. fill out the blanks). :-) >> >> Hint: That's what Ben Bacarisse is asking for. >> >> Sure, it's "obvious" for us. But how would you define "have the same >> number of elements" (in mathematical terms) such that it can be >> DEDUCED (!) für certain sets A and B? >> >> ________________________________________ >> >> Ok, I'm slighty vicious now... :-) >> >> If a = b = c, {a, b, c} still has "the same number of elements" as {3, >> 4, 5 }? :-P > > I see {a, b, c} and {3, 4, 5} and think three elements. Even if a = b = c = 1? C'mon man! :-P