Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Thu, 7 Nov 2024 18:59:02 +0100 Organization: A noiseless patient Spider Lines: 20 Message-ID: References: <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 07 Nov 2024 18:59:01 +0100 (CET) Injection-Info: dont-email.me; posting-host="a64f40a529641b77af8a405524a5b42f"; logging-data="2902438"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX181bpEEMFaj1XmQvMNsLEs/XffWsTgCe0M=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:nDJq997aatKumS366os192G9f04= Content-Language: en-US In-Reply-To: Bytes: 2267 On 07.11.2024 16:29, Jim Burns wrote: > ⎛ The boundary of a set S holds > ⎜ those points x′ such that > ⎜ each interval [x,x″] with > ⎜ x′ in its interior, x < x′ <  x″, > ⎝ holds points in S and points not.in S > Do you think you need the boundary in my last example? When we cover the real axis by intervals --------_1_--------_2_--------_3_--------_4_--------_5_--------_... J(n) = [n - √2/10, n + √2/10] and shuffle them in a clever way, then all rational numbers are midpoints of intervals and no irrational number is outside of all intervals. Do you believe this??? Regards, WM