Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Thu, 7 Nov 2024 10:04:42 +0100 Organization: A noiseless patient Spider Lines: 15 Message-ID: References: <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 07 Nov 2024 10:04:41 +0100 (CET) Injection-Info: dont-email.me; posting-host="a64f40a529641b77af8a405524a5b42f"; logging-data="2723728"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+U4XenZccPfXrLAEGkmyrLmpREOdbY+1g=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:J6HfZDfe0JyeVByXnrhl9zNCWpM= In-Reply-To: Content-Language: en-US Bytes: 1852 On 07.11.2024 01:00, Moebius wrote: > Hint: we do not have to "decide" if a > number z is inside or outside of a certain interval. It IS EITHER inside > of the interval OR NOT. (No "decision" necessary.) And when we cover the real axis by intervals --------_1_--------_2_--------_3_--------_4_--------_5_--------_... J(n) = [n - √2/10, n + √2/10] in a clever way, then all rational numbers are midpoints of intervals and no irrational number is outside of all intervals. That is the power of infinity!!! Regards, WM