Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Wed, 13 Nov 2024 17:31:54 +0100 Organization: A noiseless patient Spider Lines: 47 Message-ID: References: <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <1fca3a53-1cb4-4fd2-85b6-85e9b69ca23b@att.net> <97304048-24f5-4625-82a7-d17427f2f6e3@att.net> <65febd06-662b-4fa4-9aa8-f7353a79a110@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Wed, 13 Nov 2024 17:31:53 +0100 (CET) Injection-Info: dont-email.me; posting-host="61ce7dd57b35d31e814e3d7fc6bc44a6"; logging-data="2405205"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19L2jLgEJBlXK1GmbRTMMkzeuLQtEdVRBo=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:eDZHgmsnbayyHswDxWh6VN+azC8= In-Reply-To: <65febd06-662b-4fa4-9aa8-f7353a79a110@att.net> Content-Language: en-US Bytes: 3087 On 13.11.2024 10:08, Jim Burns wrote: > On 11/12/2024 4:38 PM, WM wrote: >>>> But the rationals are more in the sense that >>>> they include all naturals and 1/2. >>> >>> These intervals >>> {[i/j-⅒,i/j+⅒]: i/j∈ℕ⁺/ℕ⁺} >>> cover all fractions ℕ⁺/ℕ⁺ >> >> But these are more intervals. > > Are there more, though? > Or are there fewer? > i/j ↦ (i+j-1)(i+j-1)+2⋅i > > ⟨ 1/1 1/2 2/1 1/3 2/2 3/1 1/4 2/3 ... ⟩ > ↦ > ⟨ 2   4   6   8   10  12  14  16 ... ⟩ or > ⟨ 1/1 1/2 2/1 1/3 2/2 3/1 1/4 2/3 ... ⟩ > ↦ > ⟨ 2 3 5 7 11 13 17 19 ... ⟩ > or > ⟨ 1/1 1/2 2/1 ... ⟩ > ↦ > ⟨ 10^10 10^10^10 10^10^10^10 ... ⟩ > Or do infinite sets have different rules > than finite sets do? If infinite sets obey the rules sketched above, then set theorists must discard geometry because by shifting intervals the relative covering 1/5 of ℝ+ becomes oo*ℝ, and analysis because the constant sequence 1/5, 1/5, 1/5, ... has limit oo, and logic because of Bob. Regards, WM