Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Wed, 4 Dec 2024 02:02:54 +0100 Organization: A noiseless patient Spider Lines: 22 Message-ID: References: <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <87frn50zjp.fsf@bsb.me.uk> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Wed, 04 Dec 2024 02:02:54 +0100 (CET) Injection-Info: dont-email.me; posting-host="f54805dd0852139be813890d7a58bd55"; logging-data="492666"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19m6F5jdM7Vnngdd+kR11gN" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:7yIkAVglhzkRAajP/jna+0gmVKk= Content-Language: de-DE In-Reply-To: Bytes: 2513 Am 04.12.2024 um 01:47 schrieb Chris M. Thomasson: > On 12/3/2024 2:32 PM, Moebius wrote: >> Am 03.12.2024 um 23:16 schrieb Moebius: >>> Am 03.12.2024 um 22:59 schrieb Chris M. Thomasson: >> >>>> However, there is no largest natural number, when I think of that I >>>> see no limit to the naturals. >> >> Right. No "coventional" limit. Actually, >> >>       "lim_(n->oo) n" >> >> does not exist. > > In the sense of as n tends to infinity there is no limit that can be > reached as in a so-called largest natural number type of shit? Fair enough? Exactly. We say, n is "growing beyond all bounds". :-P