Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Mon, 2 Dec 2024 22:01:27 -0800 Organization: A noiseless patient Spider Lines: 50 Message-ID: References: <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 03 Dec 2024 07:01:31 +0100 (CET) Injection-Info: dont-email.me; posting-host="f777e730b2e8168ebcdb2932c05660c1"; logging-data="4083310"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18LCmc6GdTPuL0lG710Z3UB6oB8Mu/KCd0=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:mk/07eNdUiAo+I1zr5jMAjOlxGI= In-Reply-To: Content-Language: en-US Bytes: 3248 On 12/2/2024 9:47 PM, Moebius wrote: > Am 03.12.2024 um 06:34 schrieb Chris M. Thomasson: > >> What about {1, 2, 3, ..., n}, where n is taken to infinity? No limit? > > It's slightly complicated. :-P > > If we explicitly refer to sets, say, the sets S_1, S_2, S_3, ... > > We may call the sequence (S_1, S_2, S_3, ...) a "set sequence". > > Moreover we may define a certain limit (for such sequences) called "set > limit". > > Then the following can be shown: > >      lim_(n->oo) {1, 2, 3, ..., n} = {1, 2, 3, ...} . > > Or, using defined symbols: > >      lim_(n->oo) F(n) = IN . > > [ The sequence here is (F(1), F(2), F(3), ...). It's limit IN. ] > > On the other hand: > >      lim_(n->oo) {n, n+1, n+2, ...} = {} . > > Hope this helps. :-P > > . > . > . > Sometimes I like to think of the set of all natural numbers as an n-ary tree, binary here, wrt zero as a main root, so to speak: 0 / \ / \ / \ / \ 1 2 / \ / \ / \ / \ 3 4 5 6 ......................... On and on. A lot of math can be applied to it.