Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Tue, 3 Dec 2024 09:39:03 +0100 Organization: A noiseless patient Spider Lines: 15 Message-ID: References: <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Tue, 03 Dec 2024 09:39:04 +0100 (CET) Injection-Info: dont-email.me; posting-host="5c7b806b0e666b2f903894d226c0c641"; logging-data="4147424"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/dhI+ohEgY9OrNSUmP1pTb" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:ZdeaDCmos36aYNNI36mtj8UONfU= Content-Language: de-DE In-Reply-To: Bytes: 2388 Am 03.12.2024 um 06:34 schrieb Chris M. Thomasson: >> What about {1, 2, 3, ..., n}, where n is taken to infinity? No limit? lim_(n->oo) {1, 2, 3, ..., n} = {1, 2, 3, ...} . > {1, 2, 3, ..., n} when n is taken to infinity = the set of all natural > numbers? Indeed! Though better say "when (as?) n _tends to_ infinity." .. .. ..