Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Sun, 8 Dec 2024 09:48:16 +0100 Organization: A noiseless patient Spider Lines: 23 Message-ID: References: <87frn50zjp.fsf@bsb.me.uk> <87y10vzo35.fsf@bsb.me.uk> <87ser3zgez.fsf@bsb.me.uk> <52bcdc5dc54bbfb48a16c985885e5d527e483ceb@i2pn2.org> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Sun, 08 Dec 2024 09:48:17 +0100 (CET) Injection-Info: dont-email.me; posting-host="f8e8425c1693fdb94ade8f5344e0ca1f"; logging-data="3885613"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+QCvMKquo1JnVlWqwXLRY/" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:IJCNNNGdF1F/kEHO3N9D73kY9XY= In-Reply-To: Content-Language: de-DE Bytes: 2954 Am 08.12.2024 um 02:33 schrieb Chris M. Thomasson: > On 12/7/2024 1:38 PM, Moebius wrote: >> Am 07.12.2024 um 22:20 schrieb Chris M. Thomasson: >> >>> Have you ever implemented a Cantor Pairing function that can go back >>> and forth wrt the original number to unique pair and back to the >>> original number? They are pretty fun to play around with. >> >> Actually, I've implemented a complete library for (finite) "sets" in >> C. :-) >> > > Well, that's fine. Wrt this subject its all about a Cantor pairing. Take > any natural, (yes zero works as well) and be able to map it into a 100% > unique pairing. Then say okay, we have this unique pair. Now, we are > able to take said unique pair and map it right back to the natural that > created it to begin with. Indeed! https://en.wikipedia.org/wiki/Pairing_function#Inverting_the_Cantor_pairing_function and https://en.wikipedia.org/wiki/Pairing_function