Path: ...!news.mixmin.net!weretis.net!feeder8.news.weretis.net!reader5.news.weretis.net!news.solani.org!.POSTED!not-for-mail From: Mild Shock Newsgroups: sci.logic Subject: =?UTF-8?Q?4-valued_Counter_Example_=28Was:_An_Affine_Logic_Example:?= =?UTF-8?Q?_=c5=81ukasiewicz_Logic=29?= Date: Sun, 22 Dec 2024 17:16:29 +0100 Message-ID: References: MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 22 Dec 2024 16:16:28 -0000 (UTC) Injection-Info: solani.org; logging-data="1294204"; mail-complaints-to="abuse@news.solani.org" User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0 SeaMonkey/2.53.19 Cancel-Lock: sha1:n++76xBRggj8qCN9ZWSeaz1bFLk= In-Reply-To: X-User-ID: eJwFwQkBwDAIA0BLGU8KcgoF/xJ258qPfYxO8/X9RkdxipHXcp4dymNIbpO4Gy2raKsMrLyURtHCBAW9Uz9FexU0 Bytes: 3585 Lines: 115 Hi, Yes you can also find a 4-valued Counter Example, that shows that this here is not derivable in Affine Logic: ((A -> (A -> B)) -> (A -> B)) The above stems from the W Combinator. W x y = x y y The W combinator seems not to be available in Affine Combinatory Logic, cannot be derived from the combinator basis BCK. Bye P.S.: How did I verify the 3 valued logic? Well that is the Prolog code: https://gist.github.com/Jean-Luc-Picard-2021/390e0dddbe56a8b50a4a538b35290b83 :- op(1000, xfy, &). % conjunction :- op(1110, xfy, =>). % conditional value('F'). value('U'). value('T'). imp('F', 'F', 'T'). imp('F', 'U', 'T'). imp('F', 'T', 'T'). imp('U', 'F', 'U'). imp('U', 'U', 'T'). imp('U', 'T', 'T'). imp('T', 'F', 'F'). imp('T', 'U', 'U'). imp('T', 'T', 'T'). eval((A->B), X) :- eval(A, H), eval(B, J), imp(H, J, X). eval(X, X). always([], (F => G)) :- forall(always([], F), always([], G)). always([], (F & G)) :- always([], F), always([], G). always([], F) :- eval(F, 'T'). always([X|L], F) :- forall(value(X), always(L, F)). tauto(F) :- term_variables(F, L), always(L, F). Ross Finlayson schrieb: > On 12/21/2024 02:20 PM, Mild Shock wrote: >> Hi, >> >> An example of an affine Logic, is this 3-valued >> Logic with the following implication truth table: >> >>      F    U    T >> F    T    T    T >> U    U    T    T >> T    F    U    T >> >> It satisfies modus ponens: >> >> /* Implication Elimination */ >> ?- tauto((X & (X->Y) => Y)). >> true. >> >> It satisfies the types of combinators BCK: >> >> /* K Combinator */ >> ?- tauto((X -> Y -> X)). >> true. >> >> /* B Combinator */ >> ?- tauto(((Y -> Z) -> ((X -> Y) -> (X -> Z)))). >> true. >> >> /* C Combinator */ >> ?- tauto(((X -> (Y -> Z)) -> (Y -> (X -> Z)))). >> true. >> >> And surprise surprise, it doesn't satisfy contraction, >> the formula that Julio doubted that it is unprovable: >> >> ?- tauto(((X -> (X -> Y)) -> (X -> Y))). >> false. >> >> Bye >> > > quasi-modal > > How about instead > > B both > N neither > > X don't care > ? don't know > > T true > F false > > It depends on propositions fulfilling question words, > all of them. > > That you have "material implication" > is not necessarily anybody else's problem. > > I.e., nobody needs "the quasi-modal", at all, > except to make broken logics like those. > >