Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Tue, 14 Jan 2025 09:58:22 +0100 Organization: A noiseless patient Spider Lines: 48 Message-ID: References: <07258ab9-eee1-4aae-902a-ba39247d5942@att.net> <1ebbc233d6bab7878b69cae3eda48c7bbfd07f88@i2pn2.org> <4c89380adaad983f24d5d6a75842aaabbd1adced@i2pn2.org> <7fc40cc2dbd42016a62aa0374d545e9e787a7da3@i2pn2.org> <309b1b88-6eca-4e27-b1d6-cd927203286f@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 14 Jan 2025 09:58:22 +0100 (CET) Injection-Info: dont-email.me; posting-host="808a3c7120e379c601c055d8bd308c06"; logging-data="2463306"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19stZ9duIAKJ8U3ZGqmTybkwvP1ZrUVYYQ=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:IyItvhN9MXM0XHrMkLEfAvcxAGY= Content-Language: en-US In-Reply-To: <309b1b88-6eca-4e27-b1d6-cd927203286f@att.net> Bytes: 3065 On 13.01.2025 21:44, Jim Burns wrote: > On 1/13/2025 12:29 PM, WM wrote: >> On 13.01.2025 18:06, Jim Burns wrote: >>> On 1/13/2025 7:48 AM, WM wrote: > ℕ is only invariable in the sense which we use. That is potential infinity. > However, > you (WM) are convinced that > a set (such as ℕ) larger than > any set with sets.different.in.size.by.one > changes (has elements inserted or deleted) > in order to not.change.in.size.by.one. In actual infinity all elements are invariable. > > >>> ⎜ #⟦0,𝔑⦆ = #ℕ >>> ⎜ >>> ⎜ ⟦0,𝔑+1⦆ is 'fixed', too. >> >> ω > > Is ω = ⟦0,𝔑+1⦆ your 'fixed' (our 'finite')? ω is the first infinite ordinal by definition. > What about ω+1 and ω+2? Infinite ordinals too. > >>> ⎜ ⟦0,𝔑+1⦆ ⊆ ℕ >> >> No. > > Yes. No. > ∀𝔑 ∈ ℕ: #⟦0,𝔑⦆ < #⟦0,𝔑+1⦆ ≤ #ℕ No. The sequence of endsegments can get empty by ∀k ∈ ℕ : E(k+1) = E(k) \ {k+1} . There is a sharp end. Regards, WM