Path: ...!news.misty.com!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail From: joes Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Thu, 9 Jan 2025 21:06:43 -0000 (UTC) Organization: i2pn2 (i2pn.org) Message-ID: <2ba7a532ee44c61fb495c34f7fb6def7b17d3c0e@i2pn2.org> References: <98519289-0542-40ce-886e-b50b401ef8cf@att.net> <8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org> <66868399-5c4b-4816-9a0c-369aaa824553@att.net> <417ff6da-86ee-4b3a-b07a-9c6a8eb31368@att.net> <07258ab9-eee1-4aae-902a-ba39247d5942@att.net> <1ebbc233d6bab7878b69cae3eda48c7bbfd07f88@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Thu, 9 Jan 2025 21:06:43 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="2824885"; mail-complaints-to="usenet@i2pn2.org"; posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM"; User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2) X-Spam-Checker-Version: SpamAssassin 4.0.0 Bytes: 2814 Lines: 18 Am Thu, 09 Jan 2025 10:38:44 +0100 schrieb WM: > On 09.01.2025 00:45, joes wrote: >> Am Wed, 08 Jan 2025 23:06:27 +0100 schrieb WM: > >>> The set {1, 2, 3, ...} is smaller by one element than the set {0, 1, >>> 2, >>> 3, ...}. Proof: {0, 1, 2, 3, ...} \ {1, 2, 3, ...} = {0}. Cardinality >>> cannot describe this difference because it covers only mappings of >>> elements which have almost all elements as successors. >> You can't talk about size without using |abs|. > I can and I do. And everybody understands it in case of subsets. This > proves, in this special case (and more is not required), that Cantor's > size is only a qualitative measure, not a quantitative one. You have not defined any other concept of "size". How do, say, the sets of 4*k +-1 relate? -- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math: It is not guaranteed that n+1 exists for every n.