Path: ...!Xl.tags.giganews.com!local-4.nntp.ord.giganews.com!news.giganews.com.POSTED!not-for-mail NNTP-Posting-Date: Sat, 21 Dec 2024 02:59:54 +0000 Subject: Re: how (Aristotle says "potential is actual and actual is potential") Newsgroups: sci.math References: <5977d9de-4de3-424f-9f48-e6ec874fc044@att.net> <382919cf-8b73-4497-9d8a-441d067c4aa4@att.net> <2c43ff5b-87a5-4deb-a27e-f74e27fcae84@att.net> <29qdneuOINDIO_77nZ2dnZfqnPWdnZ2d@giganews.com> <57baa734-3336-4b16-b6cb-92ff397618b5@att.net> <280516ab-e9d7-4eb2-b244-ee36a60c6644@att.net> <3f630997-b4ef-448a-9ccb-c7995358df9f@att.net> From: Ross Finlayson Date: Fri, 20 Dec 2024 19:00:05 -0800 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Thunderbird/38.6.0 MIME-Version: 1.0 In-Reply-To: <3f630997-b4ef-448a-9ccb-c7995358df9f@att.net> Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 8bit Message-ID: Lines: 46 X-Usenet-Provider: http://www.giganews.com X-Trace: sv3-JQfgx9bpxahoLwnQ5uERf3xQqpzmEn4kVwmNR6L8uzLFmJKjLxYiDyS1bLWWayyalqNCV3NHtIRI9jv!9vpDepcsdPldwRsxhFv3BrP0i2RiYWoNJ9SYPxotFwe4tkjE7X3fz+wOIzZeGI3/hwmb5WP5ow== X-Complaints-To: abuse@giganews.com X-DMCA-Notifications: http://www.giganews.com/info/dmca.html X-Abuse-and-DMCA-Info: Please be sure to forward a copy of ALL headers X-Abuse-and-DMCA-Info: Otherwise we will be unable to process your complaint properly X-Postfilter: 1.3.40 Bytes: 3205 On 06/10/2024 08:36 PM, Jim Burns wrote: > On 6/10/2024 4:48 PM, Ross Finlayson wrote: >> On 06/09/2024 09:46 PM, Jim Burns wrote: > >>> [...] >> >> I like where you're going with this. > > Please help me by telling me, > when I have guessed at what you mean, > whether I've guessed correctly or not. > >>> | This putative f >>> | called EF the equivalency function, >>> | f(n) = n/d, 0 <= n <= d, d -> oo >>> | in the continuum limit, >>> | >>> Date: Fri, 31 May 2024 18:37:34 -0700 >>> >>> I guess >>> | 0 <= n <= d >>> means >>> {0,1,…,d} >>> >>> I guess >>> | f(n) = n/d, 0 <= n <= d >>> means >>> f{0,1,…,d} = >>> {0/d,1/d,…,d/d} >>> >>> I guess >>> | f(n) = n/d, 0 <= n <= d, d -> oo >>> means >>> lim(d → ∞) f(n) = n/d, 0 <= n <= d = >>> lim(d → ∞) {0/d,1/d,…,d/d} >>> >>> My guess is that >>> ran(f) = lim(d → ∞) {0/d,1/d,…,d/d} >>> >>> Ross Finlayson, >>> is ran(f) = lim(d → ∞) {0/d,1/d,…,d/d} ? > > Thank you in advance. > >