Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: Moebius Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Mon, 6 Jan 2025 05:17:25 +0100 Organization: A noiseless patient Spider Lines: 82 Message-ID: References: <8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 06 Jan 2025 05:17:25 +0100 (CET) Injection-Info: dont-email.me; posting-host="e23192f831a08e78192f0720c17fed36"; logging-data="1541559"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18Wi+5MBQ3ApFHlHWq+QpqS" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:wMSHoRnXHPPE0/VtMbKPNj822pc= Content-Language: de-DE In-Reply-To: Bytes: 4480 Am 05.01.2025 um 18:35 schrieb Alan Mackenzie: > WM wrote: >> On 05.01.2025 12:28, Alan Mackenzie wrote: > >>> The only people who talk about "potential" and "actual" infinity are >>> non-mathematicians who lack understanding, and [...] >> All mathematicians whom you have disqualified above are genuine >> mathematicians. Yes, but you are NOT, Mückenheim, and it shows! Even worse, you are a mathematical crank. Example: >> [...] all finite initial segments of natural numbers FISONs {1, 2, 3, >> ..., n} cover less than 1 % of ℕ. > > That is a thoroughly unmathematical statement. To talk about 1% of an > infinite set is meaningless. To say "cover" in the context of set > theory rather than topological spaces is inappropriate. Above all, to > say "all finite initial segments" is unmathematical, since what is meant > is not the set of FISONs, but the union of FISONs. Finally, it is > wrong, absurdly wrong. The union of all FISONs _is_ N. Indeed. >> Proof: As if. > No, not a mathematical proof. You have never studied maths to degree > level, and have no idea what a mathematical proof looks like. [...] Right. > [...] The set of FISONs does indeed "cover" > N, in the sense that their union is equal to N. A proof of this is > trivial, well within the understanding of a school student studying > maths. Satz: U{A(k) : k e IN} = IN. Beweis: Für alle n e IN ist n e A(n+1). D. h. für alle n e IN gibt es ein k e IN mit n e A(k). Also gilt für alle n e IN: n e U{A(k) : k e IN}. D. h. IN c U{A(k) : k e IN}. Da aber (wegen An e IN: A(n) c IN) auch U{A(k) : k e IN} c IN ist, gilt U{A(k) : k e IN} = IN. qed >> The set of FISONs is only potentially infinite, not There are no "potentially infinite" sets. Actually, only finite and infinite sets (in the context of set theory). > This "potentially" and "actually" infinite has led you astray, away from > the truth. They are solely historical notions, with no place in modern > [classical] mathematics [i. e. set theory + classical logic --moebius]. > The plain fact is that the set of FISONs is infinite [...] Indeed! Satz: "Die Menge aller FISONs ist abzählbar unendlich." Beweis: Es gibt eine Bijektion zwischen IN und der Menge aller FISONs {A(n) : n e IN} [mit A(n) := {m e IN : m < n} (n e IN)]. Nämlich die Abbildung f: IN --> {A(n) : n e IN}, die durch f(n) = A(n) für alle n e IN, definiert ist. f ist trivialerweise surjektiv. Die Injektivität von f ergibt sich aus f(n1) = A(n1) = {m e IN : m < n1} c_echt {m e IN : m < n2} = A(n2) = f(2) für n1,n2 e IN mit n1 < n2. Denn daraus folgt f(n1) =/= f(2) für n1 =/= n2. Wir haben also IN ~ {A(n) : n e IN} gezeigt. Daraus folgt card(IN) = card({A(n) : n e IN}) und mit card(IN) = aleph_0 schließlich card({A(n) : n e IN}) = aleph_0. qed .. .. ..