Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" Newsgroups: sci.math Subject: Re: The splendor of true Date: Mon, 10 Mar 2025 17:48:21 -0700 Organization: A noiseless patient Spider Lines: 47 Message-ID: References: MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 11 Mar 2025 01:48:24 +0100 (CET) Injection-Info: dont-email.me; posting-host="77500da324fcce57a578074132fa14ab"; logging-data="1724899"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18/MSRcmL6aPS55WKeUoAQr6WvHdLFobgQ=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:YgoQ2Y4LX7OdgklJdulGmGqZCew= In-Reply-To: Content-Language: en-US Bytes: 2304 On 3/10/2025 4:09 PM, Richard Hachel wrote: > Le 10/03/2025 à 22:21, "Chris M. Thomasson" a écrit : >> On 3/8/2025 3:54 PM, Richard Hachel wrote: > > > > > What is this? This is from a Mulia of mine that uses two split complex number iterations before it iterates using a traditional Mandelbrot set using good ol' complex numbers. Here is my per point iteration function: ________________________ void iterate_complex_split_point( ct::plot::cairo::plot_2d& scene, glm::vec2 p0, unsigned long x, unsigned long y, unsigned long n ) { glm::vec2 z = p0; glm::vec2 c = z; //c = { -.75, 0 }; // Julia mode... float mindis = 9999999.f; z = ct_complex_split_mul(z, z) + c; z = ct_complex_split_mul(z, z) + c; for (unsigned long i = 0; i < n; ++i) { z = ct_complex_mul(z, z) + c; float zdis = glm::length(z); mindis = glm::min(mindis, zdis); if (zdis > 2.f) { return; } } scene.set_pixel(x, y, CT_RGBF(mindis * 10.f, 0, 0)); } ________________________