Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM Newsgroups: sci.math Subject: Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"] Date: Wed, 2 Apr 2025 16:14:09 +0200 Organization: A noiseless patient Spider Lines: 33 Message-ID: References: <9e0c7e728f7de44e13450d7401fe65d36c5638f3@i2pn2.org> <3449b34c60603bf59f694df42857003d0bda7ab5@i2pn2.org> <26a109de9f38b645c56be2a74c2c92489de233ed@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Wed, 02 Apr 2025 16:14:10 +0200 (CEST) Injection-Info: dont-email.me; posting-host="3b3ad02323851999ad8af01c7ee6b1d2"; logging-data="1940896"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/Mdvnxpo+VkJao7p+gTpZor2jm4r7XFRI=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:3TcQhWx3rFvqcfs5wj7d/R9howQ= In-Reply-To: <26a109de9f38b645c56be2a74c2c92489de233ed@i2pn2.org> Content-Language: en-US Bytes: 3033 On 27.03.2025 22:45, joes wrote: > Am Thu, 27 Mar 2025 21:11:00 +0100 schrieb WM: >> Am 26.03.2025 um 23:18 schrieb Moebius: >>> Am 26.03.2025 um 22:38 schrieb Alan Mackenzie: >>>> WM wrote: >> >>>>> The number of [...] rooms in Hilbert's hotel is infinite but [...] >>>>> grow[s]. >>> No, it doesn't. >> And the number of guests? > Depends on how you look at it. The hotel is always "full" in that all > rooms are occupied; yet it can always accomodate more guests (but not > uncountably many). There are "exactly" as many rooms as guests at any > point, so far as that makes sense for infinities. That means not fixed infinity. The alternative is potential infinity. > >> Real fools like really counterintuitive "results". > The whole point of Hilbert's Hotel is illustrating the counterintuitivity > of infinite cardinalities. It illustrates the confusion between potential and actual infinity. "so daß jedes Element der Menge an einer bestimmten Stelle dieser Reihe steht" [E. Zermelo: "Georg Cantor – Gesammelte Abhandlungen mathematischen und philosophischen Inhalts", Springer, Berlin (1932) S. 152] If a new element enters, then the old order must be given up. A new number is required. Regards, WM