Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM Newsgroups: sci.math Subject: Re: The set of necessary FISONs Date: Thu, 6 Mar 2025 18:15:01 +0100 Organization: A noiseless patient Spider Lines: 39 Message-ID: References: <04dd7515-297c-4e7c-9e6a-a4f43e663552@att.net> <43c020cb-dc8b-4feb-be1d-2a76f02be14e@att.net> <19431656-fb42-4569-9334-b5b7e19c80c6@att.net> <4b45ff34-dc3f-4e32-90a3-237f78fbd321@att.net> <2e5bced50a3571e40311d75977f0880db77fe5a1@i2pn2.org> <630f69206a09e08bc68b59cc1f95aac5e8a0f84b@i2pn2.org> <88e790cc59217e199ea7419268fa49a598a0df8b@i2pn2.org> <3add6da446fdb6225940eb4c8a7faf710360925e@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 06 Mar 2025 18:15:02 +0100 (CET) Injection-Info: dont-email.me; posting-host="aed7eccaa368573f9e7bce49e4ec6494"; logging-data="3203468"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/J5B+8YvXws6B53/uH69qdD5no85sgCHA=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:PTk81/Yb1doU0Vcwv4YxNJEyu+c= In-Reply-To: Content-Language: en-US Bytes: 3168 On 06.03.2025 14:47, Jim Burns wrote: > On 3/6/2025 4:15 AM, WM wrote: >> Am 06.03.2025 um 10:06 schrieb joes: >>> Am Wed, 05 Mar 2025 22:05:04 +0100 schrieb WM: > >>>> Therefore iteration fails to produce >>>> actual infinity. >>> >>> As an element, but not as >>> the number of elements (=the size of the set). > > We do NOT construct[make] sets. > We construct[know] sets. Without their construction/proof we don't know whether infinite sets exist at all. Um aber die Existenz "unendlicher" Mengen zu sichern, bedürfen wir noch des folgenden ... Axioms. [Zermelo: Untersuchungen über die Grundlagen der Mengenlehre I, S. 266] The elements are defined by induction in order to guarantee the existence of infinite sets. >> The number of elements is an element >> for every element produced by induction. > > For each element in a set which > is its.own.only.inductive.subset, > that element's set of priors has > fuller.by.one sets which are larger. Never a set of elements is constructed which is larger than every finite number. >> >> Induction is potentially infinite. > > Proof.by.induction completes never! Regards, WM