Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM Newsgroups: sci.math Subject: Re: The set of necessary FISONs Date: Wed, 12 Mar 2025 21:09:08 +0100 Organization: A noiseless patient Spider Lines: 50 Message-ID: References: <123fb080-4f72-482c-a6e9-aa525aa7150b@att.net> <00fb52fc-ca18-4166-90c7-71b5a66e2dda@att.net> <499f2673-f99b-4b6d-a0df-55242e7dc479@att.net> <4209f4c4-0c11-40a8-93bb-441e45f5e9e1@att.net> <00dcba19-ae5b-401e-8222-b686d235023e@att.net> <161aa4b1-ca5a-4447-a7a7-c82ae2ebf5f6@att.net> <4aca9f75-07ba-4ad4-a215-948a4420f2aa@att.net> <7d30b44b-eb53-4ead-9188-99f243521dc8@att.net> <1a0b4566-e625-4b18-8139-a34c8d5e7515@att.net> <45c16a17-6843-4eba-bc5f-fb6815801afb@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Wed, 12 Mar 2025 21:09:09 +0100 (CET) Injection-Info: dont-email.me; posting-host="09bb81dc83c02bfd284f1f0569d2a71e"; logging-data="2923308"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19MG4urTlhPODZm5Xxw39mAYn+6XWZSpHM=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:5WtUX1o8vJf2XRf7L9fGfuVaPu4= In-Reply-To: <45c16a17-6843-4eba-bc5f-fb6815801afb@att.net> Content-Language: en-US Bytes: 3371 On 12.03.2025 19:18, Jim Burns wrote: > On 3/12/2025 9:04 AM, WM wrote: >>> ⎛ Menge Z, welche die Nullmenge als Element enthält und >>> ⎜ so beschaffen ist, daß jedem ihrer Elemente a >>> ⎝ ein weiteres Element der Form {a} entspricht > > ⎛ set Z, which contains the zero set as an element and > ⎜ is such that each of its elements a > ⎝ corresponds to another element of the form {a} > >> That is just the induction. > > A definition answers "What is Z ?" > An axiom answers "Does Z exist?" The axiom ensure the existence of an infinite set by induction. Only that is of interest for comparison with my proof. > The axiom does not create an inductive set. It ensures its existence. > Z₀ -- defined as the emptiest inductive set -- > doesn't hold darkᵂᴹ {}  and > doesn't hold any visibleᵂᴹ x and darkᵂᴹ {x} Of course not. Inductive sets do not contain dark numbers. > > {darkᵂᴹ} = Z₀\{visibleᵂᴹ} = {} Nonsense. Dark is Cantor's ℕ \ Z₀. > >> my induction is ensured > > Your induction is not ensured by > your declaration that it's ensured. It is ensured by using induction. > How is your induction ensured? Here you can see it: > >>>> ℕ \ F(1) = ℵo, >>>> and if >>>> ℕ \ F(1) \ F(2) \ F(3) \ ... \ F(n) = ℵo >>>> then >>>> ℕ \ F(1) \ F(2) \ F(3) \ ... \ F(n+1) = ℵo. > Regards, WM