Path: news.eternal-september.org!eternal-september.org!feeder3.eternal-september.org!i2pn.org!i2pn2.org!.POSTED!not-for-mail From: joes Newsgroups: sci.math Subject: Re: The set of necessary FISONs Date: Fri, 21 Feb 2025 18:45:30 -0000 (UTC) Organization: i2pn2 (i2pn.org) Message-ID: References: <340761ab1ceb68741d949331a0c64a3d6d5fa237@i2pn2.org> <865ffa4c4c1091981c5b3b93ddf3dba690cd5ad2@i2pn2.org> <559d228c01ea290aec13e735ec85036862578165@i2pn2.org> <5220af0cb7d579f20d58809659d8dcb8d7ba046c@i2pn2.org> <685c1274-e22f-409d-b39c-c3a5430c2f57@att.net> <69f56ce0-08a2-4614-b102-e333175c643d@att.net> <9a88665f-211f-4260-b585-97c72c7b6d1b@att.net> <8bed122d8b355eff96158e6f5cb76cffcc42925c@i2pn2.org> <7a26856916099747e76314a2b4c79693e14426fd@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Fri, 21 Feb 2025 18:45:30 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="1135762"; mail-complaints-to="usenet@i2pn2.org"; posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM"; User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2) X-Spam-Checker-Version: SpamAssassin 4.0.0 Am Fri, 21 Feb 2025 18:17:32 +0100 schrieb WM: > On 21.02.2025 11:37, joes wrote: >> Am Fri, 21 Feb 2025 10:39:46 +0100 schrieb WM: >>> On 21.02.2025 02:18, Richard Damon wrote: >>> >>>> In order to secure the existance of "infinite" sets, we still need >>>> the following axioms. >>> Almost correct, but only singular: we still need the following axiom. >>>> >>>> There is no mention of "induction" in the statement. >>> The following axiom is the axiom of induction. The set Z contains the >>> empty set as an element and with every element a also the element {a}. >> Yet not the element Z. > Zermelo claims to secure the existence of set Z. > This set can be handled, for instance removed from Z. A set containing Z > is not useful in this context. Z is not a set containing Z; Z cannot be "removed" from Z. -- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math: It is not guaranteed that n+1 exists for every n.