Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: WM Newsgroups: sci.logic Subject: Re: Simple enough for every reader? Date: Thu, 12 Jun 2025 11:44:06 +0200 Organization: A noiseless patient Spider Lines: 26 Message-ID: <102e7h6$2jqav$2@dont-email.me> References: <100a8ah$ekoh$1@dont-email.me> <878qmt1qz6.fsf@bsb.me.uk> <100fu5r$1oqf5$1@dont-email.me> <87plg4yujh.fsf@bsb.me.uk> <100ho1d$272si$1@dont-email.me> <87ecwizrrj.fsf@bsb.me.uk> <100kbsj$2q30f$1@dont-email.me> <874ixbxy26.fsf@bsb.me.uk> <100s897$lkp7$1@dont-email.me> <87r00dv5s4.fsf@bsb.me.uk> <100ukdf$19g96$1@dont-email.me> <87ldqkura6.fsf@bsb.me.uk> <1011f3m$1uskr$1@dont-email.me> <1011gn8$1vbtj$1@dont-email.me> <1011r74$20v83$2@dont-email.me> <1014b3q$2k7is$1@dont-email.me> <1014lg2$2l9jj$6@dont-email.me> <1019chq$3qkog$1@dont-email.me> <1019sbs$3sv8u$4@dont-email.me> <101bv2f$dvr0$1@dont-email.me> <101cgcu$gl20$3@dont-email.me> <101ekjv$12fvb$1@dont-email.me> <101f1a6$14b34$1@dont-email.me> <101hf8a$22mhj$1@dont-email.me> <101hmuh$25a4g$1@dont-email.me> <101manm$3t28r$1@dont-email.me> <101mt5i$qln$2@dont-email.me> <102bd4j$1s22l$1@dont-email.me> <102bpsc$1ud0p$3@dont-email.me> <102e1f6$2ilof$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 12 Jun 2025 11:44:06 +0200 (CEST) Injection-Info: dont-email.me; posting-host="185bb26b1d23d1e279d2cf2619f8b489"; logging-data="2746719"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+KLBGORDC5lmKf9hTNLFkekcWmwZ45w+U=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:xqbpkNd615GjQ8s5uM4b4Zy08gs= Content-Language: en-US In-Reply-To: <102e1f6$2ilof$1@dont-email.me> On 12.06.2025 10:00, Mikko wrote: > On 2025-06-11 11:38:52 +0000, WM said: > >> Outside of ZF in correct mathematics this proof for all definable >> numbers n >> |ℕ \ {1}| = ℵo. >> |ℕ \ {m ∈ ℕ | m < n}| = ℵo >> ==> |ℕ \ {m ∈ ℕ | m < n+1}| = ℵo. >> shows that is impossible to extend definability to all natural numbers >> with none remaining undefined. > > It does not show that. The "proof" does not even mention definability. "this proof for all definable numbers n" > The conclusion follows from the second sentence alone when n is understood > to be universally quantified, so the first sentence is not needed and > should > not be there. It is there. Only definablenumbers can be quantified as individuals. Regards, WM >