Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: sobriquet Newsgroups: sci.math Subject: =?UTF-8?B?UmU6IHjCsis0eCs1PTA=?= Date: Thu, 23 Jan 2025 00:58:20 +0100 Organization: A noiseless patient Spider Lines: 32 Message-ID: References: <4mVsl7f7IEYIck3oOw7iM3AOjN8@jntp> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 23 Jan 2025 00:58:20 +0100 (CET) Injection-Info: dont-email.me; posting-host="7a7fd45e414b4065f9f548f67689181f"; logging-data="1350027"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+AsFQoh/4QrOnN5nwrs2T1GXW+yMzff6Q=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:ISaWyNCOgjfkmuyB+uaZmqMAgvI= Content-Language: nl, en-US In-Reply-To: <4mVsl7f7IEYIck3oOw7iM3AOjN8@jntp> Op 22/01/2025 om 14:48 schreef Richard Hachel: > x²+4x+5=0 > > This equation has no root, and it never will. > > We can then find two roots of its mirror curve. > > Let x'=-3 and x"=-1 > > These are not roots of this curve, but the roots of the imaginary mirror > curve. > > What is this imaginary mirror curve? > > It is the curve with equation y=-x²-4x-3 > > Let's look for its roots, and we find x'=-3 and x'=-1 > > These are the imaginary roots of x²-4x+5. > > Or x'=-3(i) and x'=-1(i) > > R.H. Wolfram Alpha tells us there are two roots: https://www.wolframalpha.com/input?i=solve+x%5E2%2B4x%2B5%3D0 Here you can see the roots: https://www.desmos.com/3d/mpwj5h2ab8