Deutsch   English   Français   Italiano  
<VLJQieDhbmN89xRglUl54CccKYA@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.mixmin.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp
Message-ID: <VLJQieDhbmN89xRglUl54CccKYA@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: Question about unbounded infinite sets...
References: <uqohpe$11fn$1@dont-email.me> <usq0n9$1l201$6@i2pn2.org> <hwTIr1BT5AxLEltn0vhmkOWHTOU@jntp> <ussfie$1oi9h$3@i2pn2.org>
 <Wl2yo7e8GtB7Dw0cBdcIbLRWjXw@jntp> <usu2b3$1qebb$4@i2pn2.org> <eWWwAb-tQ_SWr_vhD4tfyUd1e6A@jntp>
 <usvcoe$1scsr$1@i2pn2.org> <P_2GeWzOrYhYAey1ziOmpvYO-DQ@jntp> <usvhs0$1skf0$2@i2pn2.org>
Newsgroups: sci.math
JNTP-HashClient: aFWQq2LYGj9-pb4jGXTWMosnI4M
JNTP-ThreadID: uqohpe$11fn$1@dont-email.me
JNTP-Uri: http://news2.nemoweb.net/?DataID=VLJQieDhbmN89xRglUl54CccKYA@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Fri, 15 Mar 24 13:02:57 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="7bea31878f2b2c7083e141212b02674bf845b71f"; logging-data="2024-03-15T13:02:57Z/8775311"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 2699
Lines: 43

Le 14/03/2024 à 20:06, Richard Damon a écrit :
> On 3/14/24 11:38 AM, WM wrote:
>> Le 14/03/2024 à 18:39, Richard Damon a écrit :
>> 
>>> the O goes to where the X was and the X goes to where the O was.
>> 
>> So it is. Never an O goes out of the matrix.
> 
> So you aren't doing it right.
> 
> Why do you say that the O going to the OTHER set never leaves,

It does not leave the matrix.

> and the X 
> that comes from the OTHER set never replaces it?

Every replacement fails to remove an O from the matrix.

>>> All the O's end up at the end of the Row/Column, where they would belong.
>> 
>> Also "the end", i.e., the places where the O can go, belong to the matrix.
> 
> No, they don't,

Where do they go?

> the belong to the SET of Natural Numbers or Unit Fractions.

Of course, but all elements of these sets belong to the matrix.
> 
> The "Natural Number n" is NOT the Rational Number n/1, but they have the 
> same vaule.

Initially every n/1 is indeXed by n.
> 
> The "Unit Fraction 1/n" is NOT the Rational Number 1/n, 

You are wrong. But all that does not remove an O from the matrix.

Regards, WM